辽宁省朝阳市建平县实验中学2022-2023学年数学高一上期末达标检测试题含解析.doc
《辽宁省朝阳市建平县实验中学2022-2023学年数学高一上期末达标检测试题含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省朝阳市建平县实验中学2022-2023学年数学高一上期末达标检测试题含解析.doc(17页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设函数,若关于的方程有四个不同的解,且,则的取值范围是( ) A. B. C. D. 2.下列结论中正确的是() A.当时,无最大值 B.当时,的最小值为3 C.当且时, D.当时, 3.若,则( ) A B. C. D. 4.已知函数是定义域为奇函数,当时,,则不等式的解集为 A. B. C. D. 5.圆与圆的位置关系是( ) A.外切 B.内切 C.相交 D.外离 6.设且,若对恒成立,则a的取值范围是() A. B. C. D. 7.已知是定义在上的单调函数,满足,则函数的零点所在区间为() A. B. C. D. 8.关于x的方程恰有一根在区间内,则实数m的取值范围是() A. B. C. D. 9.对于函数定义域中任意的,,当时,总有①;②都成立,则满足条件的函数可以是() A. B. C. D. 10.下列说法正确的是 A.截距相等的直线都可以用方程表示 B.方程不能表示平行轴的直线 C.经过点,倾斜角为直线方程为 D.经过两点,的直线方程为 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知命题:,都有是真命题,则实数取值范围是______ 12.若,则________. 13.函数的最大值为,其图象相邻两条对称轴之间的距离为 (1)求函数的解析式; (2)设,且,求的值 14.若,则___________; 15.函数的部分图象如图所示.若,且,则_____________ 16.已知函数满足,若函数与图像的交点为,,,,,则__________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知,, 求,的值; 求的值 18.当,函数为,经过(2,6),当时为,且过(-2,-2). (1)求的解析式; (2)求; 19.某纪念章从某年某月某日起开始上市,通过市场调查,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下: 上市时间天 市场价元 (1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格. 20.某厂生产某种产品的年固定成本为万元,每生产千件,需另投入成本为.当年产量不足千件时,(万元);当年产量不小于千件时,(万元).通过市场分析,若每件售价为元时,该厂年内生产的商品能全部售完.(利润销售收入总成本) (1)写出年利润(万元)关于年产量(千件)的函数解析式; (2)年产量为多少万件时,该厂在这一商品的生产中所获利润最大? 21.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间” . (1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”; (2)若是定义在上的奇函数,当时,. (i)求的“和谐区间”; (ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】由题意,根据图象得到,,,,, 推出.令,,而函数.即可求解. 【详解】 【点睛】方法点睛: 已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决; (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 2、D 【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C 【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误; 选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误; 选项C,令,此时,不成立,故C错误; 选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确 故选:D 3、C 【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果 【详解】将式子进行齐次化处理得: 故选:C 【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论 4、A 【解析】根据题意,由函数的解析式分析可得在为增函数且,结合函数的奇偶性分析可得在上为增函数,又由,则有,解可得的取值范围,即可得答案. 【详解】根据题意,当时,,则在为增函数且, 又由是定义在上的奇函数,则在上也为增函数, 则在上为增函数, 由,则有,解得:,即不等式的解集为; 故选:A 【点睛】本题考查函数奇偶性与单调性结合,解抽象函数不等式,有一定难度. 5、C 【解析】圆心为和,半径为和,圆心距离为,由于,故两圆相交. 6、C 【解析】分,,作与的图象分析可得. 【详解】当时,由函数与的图象可知不满足题意; 当时,函数单调递减,由图知,要使对恒成立,只需满足,得. 故选:C 注意事项: 用黑色墨水的钢笔或签字笔将答案写在答题卡上. 本卷共9题,共60分. 7、C 【解析】设,即, 再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间 【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增 而,,故,即 因为,, 由于,即有,所以 故,即的零点所在区间为 故选:C 【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题 8、D 【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解. 【详解】方程对应的二次函数设为: 因为方程恰有一根属于,则需要满足: ①,,解得:; ②函数刚好经过点或者,另一个零点属于, 把点代入,解得:, 此时方程为,两根为,,而,不合题意,舍去 把点代入,解得:, 此时方程为,两根为,,而,故符合题意; ③函数与x轴只有一个交点,横坐标属于, ,解得, 当时,方程的根为,不合题意; 若,方程的根为,符合题意 综上:实数m的取值范围为 故选:D 9、B 【解析】根据函数在上是增函数,且是上凸函数判断. 【详解】由当时,总有, 得函数在上是增函数, 由, 得函数是上凸函数, 在上是增函数是增函数,是下凸函数,故A错误; 在上是增函数是增函数,是上凸函数,故B正确; 在上是增函数,是下凸函数;故C错误; 在上是减函数,故D错误. 故选:B 10、D 【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示; B当m=0时,表示的就是和y轴平行的直线,故选项不对 C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确 D根据直线的两点式得到斜率为,再代入一个点得到方程为: 故答案为D 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】由于,都有,所以,从而可求出实数的取值范围 【详解】解:因为命题:,都有是真命题, 所以,即,解得, 所以实数的取值范围为, 故答案为: 12、 【解析】 由,根据三角函数的诱导公式进行转化求解即可. 详解】, , 则, 故答案为:. 13、(1) (2) 【解析】(1)根据函数的最值求出,由相邻两条对称轴之间的距离为,确定函数的周期,进而求出值; (2)由,求出,利用诱导公式结合的范围求出,的值,即可求出结论. 【小问1详解】 函数的最大值为5,所以A+1=5,即A=4 ∵函数图象的相邻两条对称轴之间的距离为, ∴最小正周期T=π,∴ω=2 故函数的解析式为. 【小问2详解】 ,则 由,则,所以 所以 14、1 【解析】根据函数解析式,从里到外计算即可得解. 【详解】,所以. 故答案为:1 15、## 【解析】根据函数的图象求出该函数的解析式,结合图象可知,点、关于直线对称,进而得出. 【详解】由图象可知, ,即, 则, 此时,, 由于, 所以,即. ,且, 由图象可知,, 则. 故答案为:. 16、4 【解析】函数f(x)(x∈R)满足, ∴f(x)的图象关于点(1,0)对称, 而函数的图象也关于点(1,0)对称, ∴函数与图像的交点也关于点(1,0)对称, ∴, ∴ 故答案为:4 点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1),; (2). 【解析】正切的二倍角公式得,再由同角三角函数关系式即可得的值.先计算然后由角的范围即可确定角. 【详解】, 且, 所以: 故:,, , 所以:, 由于: 所以:, 所以:, , , , 所以: 【点睛】本题考查三角函数关系式的恒等变换,考查给值求角问题,通过求角的某种三角函数值来求角,在选取函数时,有以下原则:用已知三角函数值的角来表示未知角,(1)已知正切函数值,则选正切函数;(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是,则选正弦、余弦皆可;若角的范围是,则选余弦较好;若角的范围为,则选正弦较好 18、(1) (2)27 【解析】(1)利用待定系数法求得. (2)根据的解析式求得. 【小问1详解】 依题意, 所以 【小问2详解】 由(1)得. 19、(1)②;(2)上市天,最低价元 【解析】(1)根据所给的四个函数的单调性,结合表中数据所表示的变化特征进行选择即可; (2)根据表中数据代入所选函数的解析式,用待定系数法求出解析式,最后利用函数的单调性求出纪念章市场价最低时的上市天数及最低的价格. 【详解】(1)通过表中数据所知纪念章的市场价与上市时间的变化先是递减而后递增,而已知所给的函数中除了②以外,其他函数要么是单调递增,要么是单调递减,要么是常值函数,所以选择②; (2)由(1)可知选择的函数解析式为:. 函数图象经过点,代入解析式中得: , 显然当时,函数有最小值,最小值为26. 所以该纪念章时的上市20天时市场价最低,最低的价格26元. 【点睛】本题考查了根据实际问题选择函数模型,考查了函数的单调性的判断,考查了二次函数的单调性及最值,考查了数学运算能力. 20、(1);(2)万件. 【解析】(1)由题意,分别写出与对应的函数解析式,即可得分段函数解析式;(2)当时,利用二次函数的性质求解最大值,当时,利用基本不等式求解最大值,比较之后得整个范围的最大值. 【详解】解:(1)当,时, 当,时, ∴ (2)当,时,, ∴当时,取得最大值(万元) 当,时, 当且仅当,即时等号成立. 即时,取得最大值万元 综上,所以即生产量为万件时,该厂在这一商品的生产中所获利润最大为万元 【点睛】与函数相关的应用题在求解的过程中需要注意函数模型的选择,注意分段函数在应用题中的运用,求解最大值时注意利用二次函数的性质以及基本不等式求解. 21、(1)正确,; (2)(i)和,(ii)存在符合题意,理由见解析. 【解析】(1)根据和谐区间的定义判断两个函数即可; (2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解. 【小问1详解】 函数定义域为,且为奇函数, 当时,单调递减,任意的,则, 所以时,没有“和谐区间”,同理时,没有“和谐区间”, 所以“函数没有“和谐区间”是正确的, 在上单调递减,所以在上单调递减, 所以值域为,即,所以, 所以,是方程的两根, 因为,解得, 所以函数的“和谐区间”为. 【小问2详解】 (i)因为当时, 所以当时,,所以 因为是定义在上的奇函数, 所以, 所以当时,,可得, 设,因为在上单调递减, 所以,, 所以,, 所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,, 所以在区间上的“和谐区间”是, 同理可得,在区间上的“和谐区间”是. 所以的“和谐区间”是和, (ii)存在,理由如下: 因为函数的图象是以在定义域内所有“和谐区间”上的图象, 所以 若集合恰含有个元素, 等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限. 因为与都是奇函数, 所以只需考虑与的图象在第一象限内有一个交点. 因为在区间上单调递减, 所以曲线的两个端点为,. 因为, 所以的零点是,,或 所以当的图象过点时,,; 当图象过点时,, , 所以当时,与的图象在第一象限内有一个交点. 所以与的图象有两个交点. 所以的取值范围是.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 朝阳市 建平县 实验 中学 2022 2023 学年 数学 上期 达标 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文