2023届贵州省务川自治县民族寄宿制中学高一数学第一学期期末经典试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 贵州省 自治县 民族 寄宿制 中学 数学 第一 学期 期末 经典 试题 解析
- 资源描述:
-
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(本大题共12小题,共60分) 1.已知,则() A.- B. C.- D. 2.函数的部分图像如图所示,则的值为( ) A. B. C. D. 3.已知集合,,则 A.或 B.或 C. D.或 4.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是( ) A.平行 B.相交但不垂直 C.垂直相交 D.异面且垂直 5.方程的解为,若,则 A. B. C. D. 6.已知,则() A. B. C. D. 7.函数对于定义域内任意,下述四个结论中, ① ② ③ ④ 其中正确的个数是() A.4 B.3 C.2 D.1 8.如图,在平面直角坐标系xOy中,角的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点P,则点P的坐标为 A. , B. , C. , D. 9.计算cos(-780°)的值是 ( ) A.- B.- C. D. 10.已知,则 A.-2 B.-1 C. D.2 11.已知,,则直线与直线的位置关系是( ) A.平行 B.相交或异面 C.异面 D.平行或异面 12.已知函数,下列说法错误的是() A.函数在上单调递减 B.函数是最小正周期为的周期函数 C.若,则方程在区间内,最多有4个不同的根 D.函数在区间内,共有6个零点 二、填空题(本大题共4小题,共20分) 13.一个几何体的三视图及其尺寸(单位:cm) ,如右图所示,则该几何体的侧面积为 cm 14.符号表示不超过的最大整数,如,定义函数,则下列命题中正确是________. ①函数最大值为; ②函数的最小值为; ③函数有无数个零点; ④函数是增函数; 15.______________ 16.已知函数,若时,恒成立,则实数k的取值范围是_____. 三、解答题(本大题共6小题,共70分) 17.已知向量,, (1)若,求向量与的夹角; (2)若函数.求当时函数的值域 18.已知,、、在同一个平面直角坐标系中的坐标分别为、、 (1)若,求角的值; (2)当时,求的值 19.已知集合,. (1)求,; (2)已知集合,若,求实数的取值范围. 20. (1)若,求的范围; (2)若,,且,,求. 21.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为. (1)求的解析式及最小正周期; (2)求的单调递增区间. 22.黔东南州某银行柜台异地跨行转账手续费的收费标准为;转账不超过200元,每笔收1元:转账不超过10000元,每笔收转账金额的0.5%:转账超过10000元时每笔收50元,张黔需要在该银行柜台进行一笔异地跨行转账的业务. (1)若张黔转账的金额为x元,手续费为y元,请将y表示为x的函数: (2)若张黔转账的金额为10t-3996元,他支付的于练费大于5元且小了50元,求t的取值范围. 参考答案 一、选择题(本大题共12小题,共60分) 1、D 【解析】根据诱导公式可得,结合二倍角的余弦公式即可直接得出结果. 【详解】由题意得, , 即, 所以. 故选:D. 2、C 【解析】根据的最值得出,根据周期得出,利用特殊点计算,从而得出的解析式,再计算. 【详解】由函数的最小值可知:, 函数的周期:,则, 当时,, 据此可得:,令可得:, 则函数的解析式为:, . 故选:C. 【点睛】本题考查了三角函数的图象与性质,属于中档题. 3、A 【解析】进行交集、补集的运算即可. 【详解】; ,或 故选A. 【点睛】考查描述法的定义,以及交集、补集的运算. 4、D 【解析】由菱形ABCD平面内,则对角线,又, 可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系. 【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内, 这与条件相矛盾. 故假设不成立,即PA与BD异面. 又在菱形ABCD中,对角线, ,,则且, 所以平面平面. 则, 所以PA与BD异面且垂直. 故选:D 【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题. 5、C 【解析】令, ∵,. ∴函数在区间上有零点 ∴.选C 6、C 【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解. 【详解】解:对两边平方得 , 进一步整理可得, 解得或, 于是 故选:C 【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题. 7、B 【解析】利用指数的运算性质及指数函数的单调性依次判读4个序号即可. 【详解】,①正确; , ,②错误; ,由,且得 , 故,③正确; 由为减函数,可得,④正确. 故选:B. 8、D 【解析】直接利用任意角的三角函数的定义求得点P的坐标 【详解】设,由任意角的三角函数的定义得, , 点P的坐标为 故选D 【点睛】本题考查任意角的三角函数的定义,是基础题 9、C 【解析】直接利用诱导公式以及特殊角的三角函数求解即可 【详解】cos(-780°)=cos780°=cos60°= 故选C 【点睛】本题考查余弦函数的应用,三角函数的化简求值,考查计算能力 10、B 【解析】,,则,故选B. 11、D 【解析】由直线平面,直线在平面内,知,或与异面 【详解】解:直线平面,直线在平面内, ,或与异面, 故选:D 【点睛】本题考查平面的基本性质及其推论,解题时要认真审题,仔细解答 12、B 【解析】A.由时,判断;B.易知是偶函数,作出其图象判断; C.在同一坐标系中作出的图象判断; D.根据函数是偶函数,利用其图象,判断的零点个数即可. 【详解】A.当时,,而,上递减,故正确; B.因为,所以是偶函数,当时,,作出其图象如图所示: 由图象知;函数不是周期函数,故错误; C.在同一坐标系中作出的图象,如图所示: 由图象知:当,方程在区间内,最多有4个不同的根,故正确; D.因为函数是偶函数,只求的零点个数即可,如图所示: 由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确; 故选:B 二、填空题(本大题共4小题,共20分) 13、80 【解析】图复原的几何体是正四棱锥,斜高是5cm,底面边长是8cm, 侧面积为 ×4×8×5=80(cm2) 考点:三视图求面积. 点评:本题考查由三视图求几何体的侧面积 14、②③ 【解析】利用函数中的定义结合函数的最值、周期以及单调性即可求解. 【详解】函数, 函数的最大值为小于,故①不正确; 函数的最小值为,故②正确; 函数每隔一个单位重复一次,所以函数有无数个零点,故③正确; 由函数图像,结合函数单调性定义可知,函数在定义域内不单调, 故④不正确; 故答案为:②③ 【点睛】本题考查的是取整函数问题,在解答时要充分理解的含义,注意对新函数的最值、单调性以及周期性加以分析,属于基础题. 15、 【解析】利用指数的运算法则和对数的运算法则即求. 【详解】原式. 故答案为:. 16、 【解析】当时,, 当时,, 又, 如图所示: 当时,在处取得最大值,且, 令,则数列是以1为首项,以为公比的等比数列, ∴,∴, 若时,恒成立,只需,当上,均有恒成立, 结合图形知:,∴,∴, 令,, 当时,,∴,∴, 当时,,,∴, ∴最大,∴,∴. 考点:1.函数图像;2.恒成立问题;3.数列的最值. 三、解答题(本大题共6小题,共70分) 17、(1) (2) 【解析】(1)首先求出的坐标,再根据数量积、向量夹角的坐标公式计算可得; (2)根据数量积的坐标公式、二倍角公式以及辅助角公式化简函数解析式,再根据的取值范围,求出的范围,最后根据正弦函数的性质计算可得; 【小问1详解】 解:因为, 当时,,又. 所以,,, 所以, 因为, 所以向量与的夹角为. 【小问2详解】 解:因为,, 所以, 当时,, 所以,则 因此函数在时的值域为 18、(1) (2)- 【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值; ⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值 【详解】⑴已知、、, 所以,, 因为, 所以 化简得,即, 因为,所以; ⑵由可得, 化简得,, 所以, 所以,综上所述, 【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题 19、(1),;(2). 【解析】(1)求出集合,再由集合的交、并、补运算即可求解. (2)根据集合的包含关系列出不等式:且,解不等式即可求解. 【详解】(1)∵,∴,∴. .∴ ∴, ∴; (2)由(1)知, 由,可得且, 解得. 综上所述:的取值范围是 20、(1);(2). 【解析】(1)利用公式 化简函数解析式可得 ,将函数解析式代入不等式得 ,即可求得x的取值范围;(2)由求得,根据的范围求出,,从而求得,,再利用两角差的余弦公式即可得解. 【详解】 若,则,, (2) 因为,所以,, 因为,所以,, , 【点睛】本题考查三角函数和差化积公式,两角和与差的正弦公式,同角三角函数的平方关系,计算时注意角的取值范围,属于中档题. 21、(1),;(2). 【解析】(1)由函数图象经过点且f(x)的图象有一条对称轴为直线, 可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式 (2)利用正弦函数的单调性求得f(x)的单调递增区间 【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线, 故最大值A=4,且, ∴, ∴ω=3 所以. 因为的图象经过点,所以, 所以,. 因为,所以, 所以. (2)因为,所以,, 所以,, 即的单调递增区间为. 【点睛】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题 22、(1) (2) 【解析】(1)根据已知条件,写成分段函数,即可求解; (2)根据已知条件,结合指数函数的性质,即可求解 【小问1详解】 解:当时,, 当时,, 当时,, 故; 【小问2详解】 解:从(1)中的分段函数得,如果张黔支付的手续费大于5元且小于50元, 则转账金额大于1000元,且小于10000元, 则只需要考虑当时的情况即可, 由, 所以,得, 得, 即实数t的取值范围是展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




2023届贵州省务川自治县民族寄宿制中学高一数学第一学期期末经典试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2539995.html