云南省楚雄州大姚县第一中学2022年数学高一上期末监测试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 云南省 楚雄 大姚县 第一 中学 2022 数学 上期 监测 试题 解析
- 资源描述:
-
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。 2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(本大题共12小题,共60分) 1.两直线2x+3y-k=0和x-ky+12=0的交点在y轴上,那么k的值是 A.-24 B.6 C.±6 D.±24 2.下列命题中,错误的是( ) A.平行于同一条直线的两条直线平行 B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面 C.已知直线平面,直线,则直线 D.已知为直线,、为平面,若且,则 3.已知函数在区间上的值域为,对任意实数都有,则实数的取值范围是() A. B. C. D. 4.函数的零点个数为( ) A.个 B.个 C.个 D.个 5.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或 者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元.(参考数据:) A.176 B.100 C.77 D.88 6.关于x的方程恰有一根在区间内,则实数m的取值范围是() A. B. C. D. 7.在轴上的截距分别是,4的直线方程是 A. B. C. D. 8.设,,下列图形能表示从集合A到集合B的函数图像的是 A. B. C. D. 9.下列函数中,既不是奇函数也不是偶函数的是 A. B. C. D. 10.根据表格中的数据可以判定方程的一个根所在的区间为( ) 1 2 3 4 5 0 0.693 1.099 1.386 1.609 1 0 1 2 3 A. B. C. D. 11.已知函数为奇函数,且当x > 0时,=x2+,则等于( ) A.-2 B.0 C.1 D.2 12.设一个半径为r的球的球心为空间直角坐标系的原点O,球面上有两个点A,B,其坐标分别为(1,2,2),(2,-2,1),则( ) A. B. C. D. 二、填空题(本大题共4小题,共20分) 13.若函数在区间上没有最值,则的取值范围是______. 14.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________. 15.在空间直角坐标系中,点A到坐标原点距离为2,写出点A的一个坐标:____________ 16.若存在常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立(或和恒成立),则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数b的取值范围是______ 三、解答题(本大题共6小题,共70分) 17.函数() (1)当时, ①求函数的单调区间; ②求函数在区间的值域; (2)当时,记函数的最大值为,求的表达式 18.已知,、、在同一个平面直角坐标系中的坐标分别为、、 (1)若,求角的值; (2)当时,求的值 19.在中,角A,B,C为三个内角,已知,. (1)求的值; (2)若,D为AB的中点,求CD的长及的面积. 20.已知函数 (1)求函数的对称轴和单调减区间; (2)当时,函数的最大值与最小值的和为2,求a 21.计算下列各式: (1); (2) 22.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点. (1)证明:平面. (2)若,证明:平面平面. 参考答案 一、选择题(本大题共12小题,共60分) 1、C 【解析】两直线2x+3y-k=0和x+ky-12=0的交点在y轴上,令x=0,可得 ,解得k即可 【详解】∵两直线2x+3y-k=0和x+ky-12=0的交点在y轴上, 令x=0,可得,解得k=±6 故选C 【点睛】本题考查了两条直线的交点坐标,考查了推理能力与计算能力,属于基础题 2、C 【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D. 【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确; 由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确; 由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误; 若,由线面平行的性质,可得过的平面与的交线与平行, 又,可得,结合,可得,故D正确. 故选:C. 3、D 【解析】根据关于对称,讨论与的关系,结合其区间单调性及对应值域求的范围. 【详解】由题设,,易知:关于对称,又恒成立, 当时,,则,可得; 当时,,则,可得; 当,即时,,则,即,可得; 当,即时,,则,即,可得; 综上,. 故选:D. 【点睛】关键点点睛:利用分段函数的性质,讨论其对称轴与给定区间的位置关系,结合对应值域及求参数范围. 4、C 【解析】根据给定条件直接解方程即可判断作答. 详解】由得:,即,解得,即, 所以函数的零点个数为2. 故选:C 5、B 【解析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案 【详解】由题意,某同学有压岁钱1000元,存入银行,年利率为2.25%,若在银行存放5年,可得金额为元,即利息为元,若放入微信零钱通或者支付宝的余额宝时,利率可达4.01%,若存放5年,可得金额为元,即利息为元,所以将这1000元选择合适方式存满5年,可以多获利息元,故选B 【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题 6、D 【解析】把方程的根转化为二次函数的零点问题,恰有一个零点属于,分为三种情况,即可得解. 【详解】方程对应的二次函数设为: 因为方程恰有一根属于,则需要满足: ①,,解得:; ②函数刚好经过点或者,另一个零点属于, 把点代入,解得:, 此时方程为,两根为,,而,不合题意,舍去 把点代入,解得:, 此时方程为,两根为,,而,故符合题意; ③函数与x轴只有一个交点,横坐标属于, ,解得, 当时,方程的根为,不合题意; 若,方程的根为,符合题意 综上:实数m的取值范围为 故选:D 7、B 【解析】根据直线方程的截距式写出直线方程即可 【详解】根据直线方程的截距式写出直线方程,化简得,故选B. 【点睛】本题考查直线的截距式方程,属于基础题 8、D 【解析】从集合A到集合B的函数,即定义域是A,值域为B,逐项判断即可得出结果. 【详解】因为从集合A到集合B的函数,定义域是A,值域为B;所以排除A,C选项,又B中出现一对多的情况,因此B不是函数,排除B. 故选D 【点睛】本题主要考查函数图像,能从图像分析函数的定义域和值域即可,属于基础题型. 9、D 【解析】根据函数奇偶性的概念,逐项判断即可. 【详解】A中,由得,又,所以是偶函数; B中,定义域为R,又,所以是偶函数; C中,定义域为,又,所以是奇函数; D中,定义域为R,且,所以非奇非偶. 故选D 【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型. 10、C 【解析】令,由表中数据结合零点存在性定理即可得解. 【详解】令, 由表格数据可得. 由零点存在性定理可知,在区间内必有零点. 故选C. 【点睛】本题主要考查了零点存在性定理,属于基础题. 11、A 【解析】首先根据解析式求值,结合奇函数有即可求得 【详解】∵x > 0时,=x2+ ∴=1+1=2 又为奇函数 ∴ 故选:A 【点睛】本题考查了函数的奇偶性,结合解析式及函数的奇偶性,求目标函数值 12、C 【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求 【详解】∵由已知可得r, 而|AB|, ∴|AB|r 故选C 【点睛】本题考查空间中两点间距离公式的应用,是基础题 二、填空题(本大题共4小题,共20分) 13、 【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围. 【详解】函数, 由正弦函数的图像与性质可知,当取得最值时满足, 解得, 由题意可知,在区间上没有最值, 则,, 所以或, 因为,解得或, 当时,代入可得或, 当时,代入可得或, 当时,代入可得或,此时无解. 综上可得或,即的取值范围为. 故答案为:. 【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题. 14、①②③④ 【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证. 【详解】①当时,由数域的定义可知, 若,则有,即,,故①是真命题; ②因为,若,则,则,,则2019,所以,故②是真命题; ③,当且时,则,因此只要这个数不为就一定成对出现, 所以有限数域的元素个数必为奇数,所以③是真命题; ④若,则,且时,,故④是真命题; ⑤当时,,所以偶数集不是一个数域,故⑤是假命题; 故答案为:①②③④ 【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题. 15、(2,0,0)(答案不唯一) 【解析】利用空间两点间的距离求解. 【详解】解:设, 因为点A到坐标原点的距离为2, 所以, 故答案为:(2,0,0)(答案不唯一) 16、 【解析】由已知可得、恒成立,利用一元二次不等式的解法和基本不等式即可求得实数的取值范围. 【详解】因为函数和之间存在隔离直线, 所以当时,可得对任意的恒成立, 则,即,所以; 当时,对恒成立,即恒成立, 又当时,,当且仅当即时等号成立, 所以, 综上所述,实数的取值范围是. 故答案为:. 三、解答题(本大题共6小题,共70分) 17、(1)①的单调递增区间为,;单调递减区间为;② (2) 【解析】(1)①分别在和两种情况下,结合二次函数的单调性可确定结果; ②根据①中单调性可确定最值点,由最值可确定值域; (2)分别在、、三种情况下,结合二次函数对称轴位置与端点值的大小关系可确定最大值,由此得到. 【小问1详解】 当时,; ①当时,, 在上单调递增; 当时,, 在上单调递减,在上单调递增; 综上所述:的单调递增区间为,;单调递减区间为 ②由①知:在上单调递增,在上单调递减,在上单调递增, ,; ,,,, ,, 在上的值域为. 【小问2详解】 由题意得: ①当,即时,,对称轴为; 当,即时,在上单调递增, ; 当,即时,在上单调递增,在上单调递减, ; ②当,即时,若,;若,; 当时,,对称轴, 在上单调递增, ; ③当,即时 在上单调递增,在上单调递减,在上单调递增, , 若,即时,; 若,即时,; 综上所述:. 18、(1) (2)- 【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值; ⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值 【详解】⑴已知、、, 所以,, 因为, 所以 化简得,即, 因为,所以; ⑵由可得, 化简得,, 所以, 所以,综上所述, 【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题 19、(1).(2),的面积. 【解析】(1)由可求出,再利用展开即可得出答案; (2)由正弦定理可得,解出,再结合(1)可得,则,从而求出,然后由余弦定理解出,故在中利用余弦定理可得,最后求出的面积即可. 【详解】(1),, , ; (2)由正弦定理可得,解得, 由(1)可得:,, ,, , 又由余弦定理可得:,解得, 在中,, , 的面积. 【点睛】本题考查了三角函数的和差公式以及正、余弦定理的应用,考查了同角三角函数基本关系式,需要学生具备一定的推理与计算能力,属于中档题. 20、(1)对称轴为,单调减区间 (2) 【解析】(1)先利用三角恒等变换化简解析式,再由正弦函数的性质求解即可; (2)由正弦函数的性质得出函数的最大值与最小值,进而得出. 【小问1详解】 由可得,函数的对称轴为 由可得, 即单调减区间为 【小问2详解】 21、(1)-37 (2)0 【解析】(1)利用对数的性质以及有理数指数幂的性质,算出结果;(2)利用诱导公式算出三角函数值 试题解析:(1)原式 ; (2),,所以原式 22、(1)详见解析;(2)详见解析. 【解析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面 (2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面. 【详解】证明:(1)因平面,平面, 所以. 因为平面,平面, 所以平面. 因为,, 所以四边形为平行四边形, 所以. 因为平面,平面, 所以平面. 因为, 所以平面平面, 因为平面, 所以平面. (2)因为,所以为等腰直角三角形, 则. 因为为的中点,且四边形为平行四边形, 所以, 故四边形为正方形. 连接,则. 因为平面,平面, 所以. 因为,平面,平面, 所以平面. 因为分别,的中点, 所以,则平面. 因为平面, 所以平面平面. 【点睛】本题主要考查证明线面平行问题以及面面垂直问题,属于一般题展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




云南省楚雄州大姚县第一中学2022年数学高一上期末监测试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2539009.html