江苏省南京市玄武区溧水高中2023届高一上数学期末质量跟踪监视试题含解析.doc
《江苏省南京市玄武区溧水高中2023届高一上数学期末质量跟踪监视试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市玄武区溧水高中2023届高一上数学期末质量跟踪监视试题含解析.doc(16页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.函数与的图象可能是() A. B. C. D. 2.已知是第二象限角,且,则点位于() A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.设向量=(1.)与=(-1, 2)垂直,则等于 A. B. C.0 D.-1 4.已知,,,则a,b,c的大小关系是() A. B. C. D. 5.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于() A.1 B.-1 C. D. 6.与函数的图象不相交的一条直线是( ) A. B. C. D. 7.若,且,则的值是 A. B. C. D. 8. “”是的() A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 9. “”是“函数在内单调递增”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要 10.过点和,圆心在轴上的圆的方程为 A. B. C D. 11.已知函数则的值为() A. B.0 C.1 D.2 12.函数与g(x)=-x+a的图象大致是 A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.幂函数的图象经过点,则________ 14.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为( ) A. B. C. D. 15.若在内无零点,则的取值范围为___________. 16.已知,,,,则______. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.已知函数,,设 (1)求的值; (2)是否存在这样的负实数k,使对一切恒成立,若存在,试求出k取值集合;若不存在,说明理由. 18.中国茶文化博大精深,小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是,环境温度是,则经过时间(单位:分)后物体温度将满足:,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示: 从98℃下降到90℃所用时间 1分58秒 从98℃下降到85℃所用时间 3分24秒 从98℃下降到80℃所用时间 4分57秒 (1)请依照牛顿冷却模型写出冷却时间(单位:分)关于冷却水温(单位:℃)函数关系,并选取一组数据求出相应的值(精确到0.01). (2)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,水煮沸后在19℃室温下为获得最佳口感大约冷却___________分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由. A.5 B.7 C.10 (参考数据:,,,,) 19.设a>0,且a≠1,解关于x的不等式 20.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长 (1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域; (2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,) 21.已知函数,其中. (1)若是周期为的偶函数,求及的值. (2)若在上是增函数,求的最大值. (3)当时,将函数的图象向右平移个单位,再向上平移1个单位,得到函数的图象,若在上至少含有10个零点,求b的最小值. 22.已知函数,且 (1)证明函数在上是增函数 (2)求函数在区间上的最大值和最小值 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、D 【解析】注意到两函数图象与x轴的交点,由排除法可得. 【详解】令,得或,则函数过原点,排除A; 令,得,故函数,都过点,排除BC. 故选:D 2、B 【解析】根据所在象限可判断出,,从而可得答案. 【详解】为第二象限角, ,, 则点位于第二象限. 故选:B. 3、C 【解析】:正确的是C. 点评:此题主要考察平面向量的数量积的概念、运算和性质,同时考察三角函数的求值运算. 4、B 【解析】根据指数函数的单调性分析出的范围,根据对数函数的单调性分析出的范围,结合中间值,即可判断出的大小关系. 【详解】因为在上单调递减,所以,所以, 又因为且在上单调递增,所以,所以, 又因为在上单调递减,所以,所以, 综上可知:, 故选:B. 【点睛】方法点睛:常见的比较大小的方法: (1)作差法:作差与作比较; (2)作商法:作商与作比较(注意正负); (3)函数单调性法:根据函数单调性比较大小; (4)中间值法:取中间值进行大小比较. 5、A 【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可 【详解】当时,,则, 所以当时,,所以 又是偶函数,, 所以 故选:A 6、C 【解析】由题意求函数的定义域,即可求得与函数图象不相交的直线. 【详解】函数的定义域是, 解得: , 当时,, 函数的图象不相交的一条直线是. 故选:C 【点睛】本题考查正切函数的定义域,属于简单题型. 7、B 【解析】由已知利用同角三角函数基本关系式可求,的值,即可得解 【详解】由题意,知,且, 所以,则, 故选B 【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题. 8、A 【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案. 【详解】当时,, 即“”是的充分条件; 当时,, 则 或, 则 或,即成立,推不出一定成立, 故“”不是的必要条件, 故选:A. 9、A 【解析】由函数在内单调递增得,进而根据充分,必要条件判断即可. 【详解】解:因为函数在内单调递增, 所以, 因为是的真子集, 所以“”是“函数在内单调递增”的充分而不必要条件 故选:A 10、D 【解析】假设圆心坐标,利用圆心到两点距离相等可求得圆心,再利用两点间距离公式求得半径,从而得到圆的方程. 【详解】设圆心坐标为: 则:,解得: 圆心为,半径 所求圆的方程为: 本题正确选项: 【点睛】本题考查已知圆心所在直线和圆上两点求解圆的方程的问题,属于基础题. 11、C 【解析】将代入分段函数解析式即可求解. 【详解】解:因为, 所以, 又,所以, 故选:C. 12、A 【解析】因为直线是递减,所以可以排除选项 ,又因为函数单调递增时,,所以当时,,排除选项B,此时两函数的图象大致为选项,故选A. 【方法点晴】本题通过对多个图象的选择考查函数的指数函数、一次函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】设幂函数的解析式,然后代入求解析式,计算. 【详解】设,则,解得,所以,得 故答案为: 14、C 【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解. 【详解】由题意,函数单调递增,且, 所以函数的零点为, 设的零点为, 则,则, 由于必过点, 故要使其零点在区间上,则或, 即或,所以, 故选:C. 【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解. 15、 【解析】求出函数的零点,根据函数在内无零点,列出满足条件的不等式,从而求的取值范围. 【详解】因为函数在内无零点, 所以,所以; 由,得, 所以或, 由,得;由,得;由,得, 因为函数在内无零点, 所以或或, 又因为,所以取值范围为. 故答案为:. 16、 【解析】利用两角和的正弦公式即可得结果. 【详解】因为,,所以, 由,,可得,, 所以. 故答案为:. 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1); (2)存在,. 【解析】(1)由题可得,代入即得; (2)由题可得函数,,为奇函数且在上单调递减,构造函数,则可得恒成立,进而可得,对恒成立,即求. 【小问1详解】 ∵函数,, ∴, ∴ . 【小问2详解】 ∵, 由,得, 又在上单调递减,在其定义域上单调递增, ∴在上单调递减, 又, ∴为奇函数且单调递减; ∵,又函数在R上单调递增, ∴函数在R上单调递减, 又, ∴函数为奇函数且单调递减; 令,则函数在上单调递减,且为奇函数, 由,可得, 即恒成立, ∴,即,对恒成立, 故,即, 故存在负实数k,使对一切恒成立,k取值集合为. 【点睛】关键点点睛:本题的关键是构造奇函数,从而问题转化为,对恒成立,参变分离后即求. 18、(1); (2)大约冷却分钟,理由见解析. 【解析】(1)根据求得冷却时间(单位:分)关于冷却水温(单位:℃)的函数关系,结合对数运算求得. (2)根据(1)中的函数关系式列方程,由此求得冷却时间. 【小问1详解】 依题意,,, ,, ,. ,依题意, 则. 若选:从98℃下降到90℃所用时间:1分58秒,即分, 则 若选:从98℃下降到85℃所用时间:3分24秒,即分, 若选:从98℃下降到80℃所用时间:4分57秒,即分, 所以. 【小问2详解】 结合(1)可知:, 依题意, . 所以大约冷却分钟. 19、当时,不等式的解集为;当时,不等式的解集为 【解析】对进行分类讨论,结合指数函数的单调性求得不等式的解集. 【详解】当时,在上递减, 所以, 即,解得, 即不等式的解集为. 当时,在上递增, 所以, 即,解得或, 即不等式的解集为. 20、(1),其定义域为 (2)第年 【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域; (2)由(1)得,然后利用对数运算求解集. 【小问1详解】 第一年投入的资金数为万元, 第二年投入的资金数为万元, 第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为 【小问2详解】 由(1)得, , 即, 因为, 所以 即该企业从第年,就是从年开始,每年投入的资金数将超过万元 21、(1),,;(2);(3). 【解析】(1)由题知,,进而求解即可得答案; (2)由题知函数在上是增函数,故,进而解不等式即可得答案. (3)由题知,进而根据题意得方程在上至少含有10个零点,进而得,再解不等式即可得答案. 【详解】解:(1)由题知, 因为是周期为的偶函数, 所以,,解得:,, 所以,. (2)因为,所以, 因为函数在上是增函数, 所以函数在上是增函数, 所以,解得, 又因为,故. 所以的最大值为. (3)当时,, 所以, 当时,, 又因为函数在上至少含有10个零点, 所以方程在上至少含有10个零点, 所以,解得 故b最小值为. 【点睛】本题考查三角函数图像平移变换,正弦型函数的性质,考查运算求解能力,化归转化思想,是中档题.本题解题的关键件在于利用整体换元的思想,将为题转化为利用函数的图像性质求解. 22、(1)证明见解析;(2)的最大值为,最小值为. 【解析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论; (2)根据在上的单调性,求在上的最值即可. 【详解】解:(1)因为,可得,解得,所以, 任取,则, 因为,所以,可得,即且, 所以,即,所以在上是增函数; (2)由(1)知,在上是增函数, 同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,, 所以的最大值为,最小值为. 【点睛】方法点睛:利用定义证明函数单调性方法: (1)取值:设是该区间内的任意两个值,且; (2)作差变形:即作差,即作差,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差的符号; (4)下结论:判断,根据定义作出结论. 即取值——作差——变形——定号——下结论.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南京市 玄武 溧水 高中 2023 届高一上 数学 期末 质量 跟踪 监视 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文