2023届安徽省安庆市潜山二中高一上数学期末统考模拟试题含解析.doc
《2023届安徽省安庆市潜山二中高一上数学期末统考模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届安徽省安庆市潜山二中高一上数学期末统考模拟试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.设全集,集合,那么() A. B. C. D. 2.函数是奇函数,则的值为() A.1 B. C.0 D. 3.已知函数是定义在R上的偶函数,若对于任意不等实数,,,不等式恒成立,则不等式的解集为() A. B. C. D. 4.定义在的函数,已知是奇函数,当时,单调递增,若且,且值( ) A.恒大于0 B.恒小于0 C.可正可负 D.可能为0 5.已知函数是定义在上的奇函数,当时,,则当时,表达式是 A. B. C. D. 6.函数的定义域为,值域为,则的取值范围是() A. B. C. D. 7.在平面直角坐标系中,角以为始边,终边与单位圆交于点,则() A. B. C. D. 8.下列函数中,与函数有相同图象的一个是 A. B. C. D. 9.函数满足:为偶函数:在上为增函数若,且,则与的大小关系是 A. B. C. D.不能确定 10.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是() A.已知,若,则 B.已知,若,则 C.已知,若,则 D.已知,若,则 11.若,则的值是() A. B. C. D.1 12.函数=的部分图像如图所示,则的单调递减区间为 A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.在中,,则等于______ 14.函数最小值为______ 15.计算:______. 16.已知,则的值为__________ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.(1)当取什么值时,不等式对一切实数都成立? (2)解关于的方程:. 18.(1)求直线与的交点的坐标; (2)求两条平行直线与间的距离 19.(1)从区间内任意选取一个实数,求事件“”发生的概率; (2)从区间内任意选取一个整数,求事件“”发生的概率. 20.从某校随机抽取100名学生,调查他们一学期内参加社团活动的次数,整理得到的频数分布表和频率分布直方图如下: 组号 分组 频数 1 6 2 8 3 17 4 22 5 25 6 12 7 6 8 2 9 2 合计 100 从该校随机选取一名学生,试估计这名学生该学期参加社团活动次数少于12次的概率; 求频率分布直方图中的a、b的值; 假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生本学期参加社团活动的平均次数 21.已知集合,,. (1)求,; (2)若,求实数a的取值范围. 22.函数的一段图象如图所示. (1)求函数的解析式; (2)将函数图象向右平移个单位,得函数的图象,求在的单调增区间 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】由补集的定义分析可得,即可得答案 【详解】根据题意,全集,而, 则, 故选: 2、D 【解析】根据奇函数的定义可得,代入表达式利用对数的运算即可求解. 【详解】函数是奇函数, 则,即, 从而可得,解得. 当时,,即定义域为, 所以时,是奇函数 故选:D 【点睛】本题考查了函数奇偶性的应用,需掌握函数奇偶性的定义,同时本题也考查了对数的运算,属于基础题. 3、C 【解析】由条件对于任意不等实数,,不等式恒成立可得函数在上为减函数,利用函数性质化简不等式求其解. 【详解】∵函数是定义在R上的偶函数, ∴, ∴不等式可化为 ∵对于任意不等实数,,不等式恒成立, ∴函数在上为减函数,又, ∴, ∴, ∴不等式的解集为 故选:C. 4、A 【解析】由是奇函数,所以图像关于点对称, 当时,单调递增,所以当时单调递增,由, 可得,,由可知, 结合函数对称性可知 选A 5、D 【解析】若,则,利用给出的解析式求出,再由奇函数的定义即,求出. 【详解】设,则,当时,, , 函数是定义在上的奇函数, , ,故选D . 【点睛】本题考查了函数奇偶性在求解析式的应用,属于中档题.本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为 6、B 【解析】观察在上的图象,从而得到的取值范围. 【详解】解:观察在上的图象, 当时,或, 当时,, ∴的最小值为:, 的最大值为:, ∴的取值范围是 故选:B 【点睛】本题考查余弦函数的定义域和值域,余弦函数的图象,考查数形结合思想,属基础题 7、A 【解析】根据任意角三角函数的概念可得出,然后利用诱导公式求解. 【详解】因为角以为始边,且终边与单位圆交于点, 所以,则. 故选:A. 【点睛】当以为始边,已知角终边上一点的坐标为时,则,. 8、B 【解析】逐一考查选项中的函数与所给的函数是否为同一个函数即可确定其图象是否相同. 【详解】逐一考查所给的选项: A.,与题中所给函数的解析式不一致,图象不相同; B.,与题中所给函数的解析式和定义域都一致,图象相同; C.的定义域为,与题中所给函数的定义域不一致,图象不相同; D.的定义域为,与题中所给函数的定义域不一致,图象不相同; 故选B. 【点睛】本题主要考查函数相等的概念,需要同时考查函数的定义域和函数的对应关系,属于中等题. 9、A 【解析】根据题意,由为偶函数可得函数的对称轴为,进而结合函数的单调性可得上为减函数,结合,且分析可得,据此分析可得答案 【详解】根据题意,函数满足为偶函数,则函数的对称轴为,则有, 又由在上为增函数,则在上为减函数, 若,则, 又由,则, 则有, 又由,则, 故选A 【点睛】本题考查函数的单调性与奇偶性的综合应用,涉及函数的对称性,属于中档题 10、D 【解析】A.n和m的方向无法确定,不正确; B.要得到,需要n垂直于平面内两条相交直线,不正确; C.直线n有可能在平面内,不正确; D.平行于平面的垂线的直线与此平面垂直,正确. 【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确; B.一条直线与平面内两条相交直线垂直,则直线垂直于平面, 无法表示直线n垂直于平面内两条相交直线,所以不一定正确; C.直线n有可能在平面内,所以不一定正确; D.,则直线n与m的方向相同,,则,正确; 故选D 【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题. 11、D 【解析】由求出a、b,表示出,进而求出的值. 详解】由, . 故选:D 12、D 【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D. 考点:三角函数图像与性质 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 【解析】由题;, 又,代入得: 考点:三角函数的公式变形能力及求值. 14、 【解析】根据,并结合基本不等式“1”的用法求解即可. 【详解】解:因为, 所以 ,当且仅当时,等号成立 故函数的最小值为. 故答案为: 15、 【解析】利用指数幂和对数的运算性质可计算出所求代数式的值. 【详解】原式. 故答案为:. 【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题. 16、 【解析】 答案: 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1);(2). 【解析】(1)分,两种情况讨论,利用判别式控制,即得解; (2)利用对数的定义,求解即可 【详解】(1)当时,,明显满足条件. 当时,由“不等式对一切实数都成立” 可知且 解得 综上可得 (2)由对数定义可得: 所以 所以 所以 18、(1);(2)4 【解析】(1)联立直线方程求解即可得交点; (2)由平行直线间的距离公式求解. 【详解】(1)联立得 故所求交点的坐标为 (2)两条平行直线与间的距离 19、(1);(2). 【解析】(1)由,得,即,故由几何概型概率公式,可得从区间内任意选取一个实数,求事件“”发生的概率;(2)由,得,整数有个,在区间的整数有个,由古典概型概率公式可知得,从区间内任意选取一个整数事件“”发生的概率. 试题解析:(1)因为,所以,即, 故由几何概型可知,所求概率为. (2)因为,所以, 则在区间内满足的整数为1,2,3,共3个, 故由古典概型可知,所求概率为. 20、(1)0.9;(2)b=0.125;(3)7.68次. 【解析】由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为90,由此能求出从该校随机选取一名学生,估计这名学生该学期参加社团活动次数少于12次的概率 由频数分布表及频率分布直方图能求出频率分布直方图a,b的值 利用频率分布直方图和频数分布表能估计样本中的100名学生本学期参加社团活动的平均次数 【详解】解:由频数分布表得这名学生该学期参加社团活动次数少于12次的频数为:, 从该校随机选取一名学生,估计这名学生该学期参加社团活动次数少于12次的概率 由频数分布表及频率分布直方图得: 频率分布直方图中, 估计样本中的100名学生本学期参加社团活动的平均次数: 次 【点睛】本题考查概率、频率、平均数的求法,考查频数分布表、频率分布直方图等知识,属于基础题 21、(1), (2) 【解析】(1)由交集和并集运算直接求解即可. (2)由,则 【详解】(1)由集合, 则, (2)若,则,所以 22、(1);(2) 【解析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式; (2)根据函数y=Asin(ωx+φ)的图象变换规律,求得函数y=f2(x)的解析式,由,得到函数的单调增区间. 【详解】(1)如图,由题意得,的最大值为2, 又,∴,即 ∴. 因为的图像过最高点,则 即 (2).依题意得: ∴由 解得: ,则的单调增区间为. 【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的单调性,属于中档题- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 安徽省 安庆市 潜山 中高 数学 期末 统考 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文