2022-2023学年江苏省泰州市泰兴一中数学高一上期末综合测试模拟试题含解析.doc
《2022-2023学年江苏省泰州市泰兴一中数学高一上期末综合测试模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年江苏省泰州市泰兴一中数学高一上期末综合测试模拟试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 请考生注意: 1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。 2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.若,则() A. B. C. D. 2.设,,,则() A. B. C. D. 3.幂函数图象经过点,则的值为() A. B. C. D. 4.下面各组函数中表示同一个函数的是( ) A., B., C., D., 5.已知函数,则下列对该函数性质的描述中不正确的是() A.的图像关于点成中心对称 B.的最小正周期为2 C.的单调增区间为 D.没有对称轴 6.已知命题:角为第二或第三象限角,命题:,命题是命题的() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 7.若,则有( ) A.最小值为3 B.最大值为3 C.最小值为 D.最大值为 8.若a,b是实数,则是的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 9.函数,则 A. B.-1 C.-5 D. 10.已知全集,集合,集合,则 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.已知函数是定义在上且以3为周期的奇函数,当时,,则时,__________,函数在区间上的零点个数为 __________ 12.若命题,,则的否定为___________. 13.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________. 14.设是定义在上的函数,若存在两个不等实数,使得,则称函数具有性质,那么下列函数: ① ;② ;③; 具有性质的函数的个数为____________ 15.某高中校为了减轻学生过重的课业负担,提高育人质量,在全校所有的1000名高中学生中随机抽取了100名学生,了解他们完成作业所需要的时间(单位:h),将数据按照,,,,,,分成6组,并将所得的数据绘制成频率分布直方图(如图所示). 由图中数据可知___________;估计全校高中学生中完成作业时间不少于的人数为___________. 16.已知不等式的解集是__________. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数. (1)当时,恒成立,求实数的取值范围; (2)是否同时存在实数和正整数,使得函数在上恰有个零点?若存在,请求出所有符合条件的和的值;若不存在,请说明理由. 18.已知函数f(x)=2sin(ωx+φ)+1()的最小正周期为π,且 (1)求ω和φ的值; (2)函数f(x)的图象纵坐标不变的情况下向右平移个单位,得到函数g(x)的图象, ①求函数g(x)的单调增区间; ②求函数g(x)在的最大值 19.已知函数的最小值正周期是 (1)求的值; (2)求函数的最大值,并且求使取得最大值的x的集合 20.已知函数是定义在上的奇函数,且当时,. (1)当时,求函数的解析式. (2)解关于的不等式:. 21.已知函数是定义在上的奇函数,且. (1)求a,b的值; (2)用定义证明在上是增函数; (3)解不等式:. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、A 【解析】应用辅助角公式将条件化为,再应用诱导公式求. 【详解】由题设,,则, 又. 故选:A 2、C 【解析】根据指数函数和对数函数的单调性判断,,的范围即可比较的大小. 【详解】因为,即, ,即, ,即, 所以, 故选:C. 3、D 【解析】设,由点幂函数上求出参数n,即可得函数解析式,进而求. 【详解】设,又在图象上,则,可得, 所以,则. 故选:D 4、B 【解析】根据两个函数的定义域相同,且对应关系相同分析判断即可 【详解】对于A,的定义域为R,而的定义域为,两函数的定义域不相同,所以不是同一个函数; 对于B,两个函数的定义域都为R,定义域相同,,这两个函数是同一个函数; 对于C,的定义域为,而的定义域是R,两个函数的定义城不相同,所以不是同一个函数; 对于D,的定义域为,而的定义域是R,两个的数的定义域不相同,所以不是同一个函数. 故选:B. 5、C 【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可 【详解】对于A:令,令,可得函数的一个对称中心为,故正确; 对于B:函数f(x)的最小正周期为T=,故正确; 对于C:令,解不等式可得函数的单调递增区间为,故错误; 对于D:正切函数不是轴对称图形,故正确 故选:C 【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键 6、D 【解析】利用切化弦判断充分性,根据第四象限的角判断必要性. 【详解】当角为第二象限角时,, 所以, 当角为第三象限角时,, 所以, 所以命题是命题的不充分条件. 当时,显然,当角可以为第四象限角,命题是命题的不必要条件. 所以命题是命题的既不充分也不必要条件. 故选:D 7、A 【解析】利用基本不等式即得, 【详解】∵, ∴, ∴,当且仅当即时取等号, ∴有最小值为3. 故选:A. 8、B 【解析】由对数函数单调性即可得到二者之间的逻辑关系. 【详解】由可得;但是时,不能得到. 则是的必要不充分条件 故选:B 9、A 【解析】f(x)= ∴f( )= , f[f()]=f()= . 故答案为A 点睛:由分段函数得f()=,由此能求出f[f()]的值 10、C 【解析】先求出,再和求交集即可. 【详解】因全集,集合,所以, 又,所以. 故选C 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 ①. ②.5 【解析】(1)当时,, ∴, 又函数是奇函数, ∴ 故当时, (2)当时,令,得,即, 解得,即, 又函数为奇函数,故可得,且 ∵函数是以3为周期的函数, ∴,, 又, ∴ 综上可得函数在区间上的零点为,共5个 答案:,5 12、, 【解析】利用特称命题的否定可得出结论. 【详解】命题为特称命题,该命题的否定为“,”. 故答案为:,. 13、 【解析】设出点的坐标,根据题意列出方程组,从而求得该点到原点的距离. 【详解】设该点的坐标 因为点到三个坐标轴的距离都是1 所以,,, 所以 故该点到原点的距离为, 故填. 【点睛】本题主要考查了空间中点的坐标与应用,空间两点间的距离公式,属于中档题. 14、 【解析】根据题意,找出存在的点,如果找不出则需证明:不存在,,使得 【详解】①因为函数是奇函数,可找关于原点对称的点,比如,存在; ②假设存在不相等,,使得,即,得,矛盾,故不存在; ③函数为偶函数,,令,, 则,存在 故答案为: 【点睛】关键点点睛:证明存在性命题,只需找到满足条件的特殊值即可,反之需要证明不存在,一般考虑反证法,先假设存在,推出矛盾即可,属于中档题. 15、 ①.0.1 ②.50 【解析】利用频率之和为1可求,由图求出完成作业时间不少于的频率,由频数=总数频率可求. 【详解】由可求;由图可知,全校高中学生中完成作业时间不少于的频率为,则对应频数为. 故答案为:;50 16、 【解析】结合指数函数的单调性、绝对值不等式的解法求得不等式的解集. 详解】,, ,或, 解得或, 所以不等式不等式的解集是. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)存在,当时,;当时,. 【解析】(1)利用三角恒等变换思想得出,令,,由题意可知对任意的,可得出,进而可解得实数的取值范围; (2)由题意可知,函数与直线在上恰有个交点,然后对实数的取值进行分类讨论,考查实数在不同取值下两个函数的交点个数,由此可得出结论. 【详解】(1), 当时,,,则, 要使对任意恒成立, 令,则,对任意恒成立, 只需,解得, 实数的取值范围为; (2)假设同时存在实数和正整数满足条件, 函数在上恰有个零点, 即函数与直线在上恰有个交点. 当时,,作出函数在区间上的图象如下图所示: ①当或时,函数与直线在上无交点; ②当或时,函数与直线在上仅有一个交点, 此时要使函数与直线在上有个交点,则; ③当或时,函数直线在上有两个交点, 此时函数与直线在上有偶数个交点,不可能有个交点,不符合; ④当时,函数与直线在上有个交点, 此时要使函数与直线在上恰有个交点,则. 综上所述,存在实数和正整数满足条件: 当时,;当时,. 【点睛】关键点点睛:本题考查利用函数不等式恒成立求参数,利用函数在区间上的零点个数求参数,解本题第(2)问的关键就是要注意到函数与直线的图象在区间上的图象的交点个数,结合周期性求解. 18、 (1) ; (2)① 增区间为;②最大值为3. 【解析】(1)直接利用函数的周期和函数的值求出函数的关系式 (2)利用函数的平移变换求出函数g(x)的关系式,进一步求出函数的单调区间 (3)利用函数的定义域求出函数的值域 【详解】(1)的最小正周期为,所以 ,即=2, 又因为,则,所以. (2)由(1)可知,则, ① 由得, 函数增区间为. ② 因为,所以. 当,即时,函数取得最大值,最大值为. 【点睛】本题考查正弦型函数性质单调性,函数的平移变换,函数的值域的应用.属中档题. 19、(1);(2)最大值为,此时. 【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解. (2)由(1)知,,令,即可求解. 【详解】(1) 由题设,函数的最小正周期是,可得,所以; (2)由(1)知, 当,即时,取得最大值1, 所以函数的最大值为 20、(1)当时, (2) 【解析】(1)根据函数奇偶性可求出函数的解析式; (2)先构造函数,然后利用函数的单调性解不等式. 【小问1详解】 解: 当时,,. . 又当时,也满足 当时,函数的解析式为. 【小问2详解】 设函数 函数在上单调递增 又可化为, 在上也是单调递增函数. ,解得. 关于的不等式的解集为. 21、(1),; (2)证明见解析; (3). 【解析】(1)根据奇函数定义及给定函数值列式计算作答. (2)用函数单调性定义证明单调性的方法和步骤直接证明即可. (3)利用(1),(2)的结论脱去法则“f”,解不等式作答. 【小问1详解】 因数是定义在上的奇函数,则,即, 解得,即有,,解得, 所以,. 【小问2详解】 由(1)知,,, 因,则,而,因此,,即, 所以函数在上是增函数. 【小问3详解】 由已知及(1),(2)得:,解得, 所以不等式的解集为:.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 江苏省 泰州市 泰兴 一中 数学 上期 综合测试 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文