江苏省南京市玄武区溧水高中2022年数学高一上期末质量检测试题含解析.doc
《江苏省南京市玄武区溧水高中2022年数学高一上期末质量检测试题含解析.doc》由会员分享,可在线阅读,更多相关《江苏省南京市玄武区溧水高中2022年数学高一上期末质量检测试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.零点所在的区间是() A. B. C. D. 2.已知幂函数过点,则在其定义域内() A.为偶函数 B.为奇函数 C.有最大值 D.有最小值 3.条件p:|x|>x,条件q:,则p是q的() A.充要条件 B.既不充分也不必要条件 C.必要不充分条件 D.充分不必要条件 4.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是 A.三角形的直观图仍然是一个三角形 B.的角的直观图会变为的角 C.与轴平行的线段长度变为原来的一半 D.原来平行的线段仍然平行 5.下列函数中为奇函数,且在定义域上是增函数是() A. B. C. D. 6.由直线上的点向圆引切线,则切线长的最小值为( ) A. B. C. D. 7.函数(且)与函数在同一坐标系内的图象可能是() A. B. C. D. 8.如果命题“使得”是假命题,那么实数的取值范围是( ) A. B. C. D. 9.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为( ) A. B. C. D. 10. “”是“”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________ 12.已知向量=(1,2)、=(2,λ),,∥,则λ=______ 13.已知扇形的圆心角为,半径为,则扇形的面积为______ 14.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________. 15.___________. 16.已知幂函数的图象过点,则_____________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.设函数f(x)的定义域为I,对于区间,若,x2∈D(x1<x2)满足f(x1)+f(x2)=1,则称区间D为函数f(x)的V区间 (1)证明:区间(0,2)是函数的V区间; (2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围; (3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间 18.某生物研究者于元旦在湖中放入一些风眼莲(其覆盖面积为),这些风眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为,三月底测得凤眼莲的覆盖面积为,凤眼莲的覆盖面积(单位:)与月份(单位:月)的关系有两个函数模型与)可供选择 (1)试判断哪个函数模型更合适并求出该模型的解析式; (2)求凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份.(参考数据:,) 19.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证: (1)直线平面; (2)平面平面. 20.已知函数)的最大值为2 (1)求m的值; (2)求使成立的x的取值集合; (3)将的图象上所有点的横坐标变为原来的)倍(纵坐标不变),得到函数的图象,若是的一个零点,求t的最大值 21.已知函数是定义在上的偶函数,函数. (1)求实数的值; (2)若时,函数的最小值为.求实数的值. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】利用零点存在定理依次判断各个选项即可. 【详解】由题意知:在上连续且单调递增; 对于A,,,内不存在零点,A错误; 对于B,,,内不存在零点,B错误; 对于C,,,则,内存在零点,C正确; 对于D,,,内不存在零点,D错误. 故选:C. 2、A 【解析】设幂函数为,代入点,得到,判断函数的奇偶性和值域得到答案. 【详解】设幂函数为,代入点,即, 定义域为,为偶函数且 故选: 【点睛】本题考查了幂函数的奇偶性和值域,意在考查学生对于函数性质的综合应用. 3、D 【解析】解不等式得到p:,q:或,根据推出关系得到答案. 【详解】由得:,所以p:,而,解得:或,故q:或,因为或,且或,故p是q的充分不必要条件 故答案为:D 4、B 【解析】根据斜二测画法,三角形的直观图仍然是一个三角形,故 正确;的角的直观图不一定的角,例如也可以为,所以不正确;由斜二测画法可知,与轴平行的线段长度变为原来的一半,故正确;根据斜二测画法的作法可得原来平行的线段仍然平行,故正确,故选B. 5、D 【解析】结合基本初等函数的单调性及奇偶性分别检验各选项即可判断 【详解】对于函数,定义域为,且,所以函数为偶函数,不符合题意; 对于在定义域上不单调,不符合题意; 对于在定义域上不单调,不符合题意; 对于,由幂函数的性质可知,函数在定义域上为单调递增的奇函数,符合题意 故选:D 6、B 【解析】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小,此最小值即为圆心(4,﹣2) 到直线的距离m,求出m,由勾股定理可求切线长的最小值 【详解】要使切线长最小,必须直线y=x+2上的点到圆心的距离最小, 此最小值即为圆心(4,﹣2)到直线的距离m, 由点到直线的距离公式得 m==4, 由勾股定理求得切线长的最小值为= 故选B 【点睛】本题考查直线和圆的位置关系,点到直线的距离公式、勾股定理的应用.解题的关键是理解 要使切线长最小,必须直线y=x+2上的点到圆心的距离最小 7、C 【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案. 【详解】解:当时,增函数,开口向上,对称轴, 排除B,D;当时,为减函数,开口向下, 对称轴,排除A, 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置 (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象. 8、B 【解析】特称命题是假命题,则该命题的否定为全称命题且是真命题,然后根据即可求解. 【详解】依题意,命题“使得”是假命题, 则该命题的否定为“”,且是真命题; 所以,. 故选:B 9、A 【解析】先由三视图得出该几何体的直观图,结合题意求解即可. 【详解】由三视图可知其直观图, 该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A 【点睛】本题主要考查几何体的三视图,属于基础题型. 10、A 【解析】根据终边相同的角的三角函数值相等,结合充分不必要条件的定义,即可得到答案; 【详解】, 当, “”是“”的充分不必要条件, 故选:A 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】根据随机数表,依次进行选择即可得到结论. 【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15. 故答案为:15. 12、-2 【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果 【详解】∵,∴, ∵∥,, ∴,解得, 故答案为:-2 13、 【解析】∵扇形的圆心角为,半径为, ∴扇形的面积 故答案为 14、. 【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。 【详解】设圆锥底面半径为r, 则由题意得,解得. ∴底面圆的面积为. 又圆锥的高. 故圆锥的体积. 【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。 15、2 【解析】利用换底公式及对数的性质计算可得; 【详解】解:. 故答案为: 16、## 【解析】设出幂函数解析式,代入已知点坐标求解 【详解】设,由已知得,所以, 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)证明详见解析;(2)a>1;(3)证明详见解析. 【解析】(1)取特殊点可以验证; (2)利用的单调递减可以求实数a的取值范围; (3)先证f(x)在上存在零点,然后函数在区间[0,+∞)上仅有2个零点, f(x)在[π,+∞)上不存在零点,利用定义说明区间[π,+∞)不是函数f(x)的V区间. 详解】(1)设x1,x2∈(0,2)(x1<x2) 若f(x1)+f(x2)=1,则 所以lgx1+lgx2=lgx1x2=0,x1x2=1, 取,,满足定义 所以区间(0,2)是函数的V区间 (2)因为区间[0,a]是函数的V区间, 所以,x2∈[0,a](x1<x2)使得 因为在[0,a]上单调递减 所以,, 所以,a-1>0,a>1 故所求实数a的取值范围为a>1 (3)因为,, 所以f(x)在上存在零点, 又因为f(0)=0 所以函数f(x)在[0,π)上至少存在两个零点, 因为函数在区间[0,+∞)上仅有2个零点, 所以f(x)在[π,+∞)上不存在零点, 又因为f(π)<0,所以,f(x)<0 所以,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0 即因此不存在,x2∈[π,+∞)(x1<x2)满足f(x1)+f(x2)=1 所以区间[π,+∞)不是函数f(x)的V区间 【点睛】本题考查了函数的性质,对新定义的理解,要求不仅好的理解能力,还要有好的推理能力. 18、(1)函数模型较为合适,且该函数模型的解析式为;(2)月份. 【解析】(1)根据两个函数模型增长的快慢可知函数模型较为合适,将点、代入函数解析式,求出、的值,即可得出函数模型的解析式; (2)分析得出,解此不等式即可得出结论. 【详解】(1)由题设可知,两个函数、)在上均为增函数, 随着的增大,函数的值增加得越来越快, 而函数的值增加得越来越慢, 由于风眼莲在湖中的蔓延速度越来越快,故而函数模型满足要求. 由题意可得,解得,, 故该函数模型的解析式为; (2)当时,,故元旦放入凤眼莲的面积为, 由,即,故, 由于,故. 因此,凤眼莲覆盖面积是元旦放入凤眼莲面积倍以上的最小月份是月份. 【点睛】思路点睛:解函数应用题的一般程序: 第一步:审题——弄清题意,分清条件和结论,理顺数量关系; 第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论; 第四步:还原——将用数学方法得到的结论还原为实际问题的意义; 第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性 19、(1)证明见解析;(2)证明见解析. 【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面; (2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立. 【详解】(1)、分别为、的中点,为的中位线,, 为棱柱,,, 平面,平面,平面; (2)在三棱柱中,平面, 平面,, 又且,、平面, 平面,而平面,故. 又,且,、平面, 平面,又平面,平面平面. 【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题. 20、(1) (2) (3) 【解析】(1)将函数解析式化简整理,然后求出最值,进而得到,即可求出结果; (2)结合正弦型函数图象,解三角不等式即可求出结果; (3)结合伸缩变换求出函数的解析式,进而求出零点,然后结合题意即可求出结果. 【小问1详解】 因为的最大值为1,所以的最大值为, 依题意,,解得 【小问2详解】 由(1)知, 由, 得 所以 解得 所以,使成立的x取值集合为 【小问3详解】 依题意,, 因为是的一个零点,所以, 所以 所以, 因为,所以, 所以t的最大值为 21、(1) (2) 【解析】(1)根据函数的奇偶性求得的值. (2)结合指数函数、二次函数的性质求得. 【小问1详解】 的定义域为, 为偶函数,所以, . 【小问2详解】 由(1)得. . 令, 结合二次函数的性质可知: 当时,时,最小,即, 解得,舍去. 当时,时,最小,即,解得(负根舍去). 当时,时,最小,即, 解得,舍去. 综上所述,.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 南京市 玄武 溧水 高中 2022 数学 上期 质量 检测 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文