2023届赣州市红旗实验中学高一上数学期末综合测试试题含解析.doc
《2023届赣州市红旗实验中学高一上数学期末综合测试试题含解析.doc》由会员分享,可在线阅读,更多相关《2023届赣州市红旗实验中学高一上数学期末综合测试试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。 2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。 3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。 一、选择题(本大题共12小题,共60分) 1. “”是“”的( ) A.充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分也非必要条件 2.已知命题p:“”,则为() A. B. C. D. 3.方程的解所在的区间为() A. B. C. D. 4.已知函数(),对于给定的一个实数,点的坐标可能是() A.(2,1) B.(2,-2) C.(2,-1) D.(2,0) 5.已知的图象在上存在个最高点,则的范围( ) A. B. C. D. 6.下列函数,在其定义域内既是奇函数又是增函数的是 A. B. C. D. 7.函数的值域是 A. B. C. D. 8.已知命题:角为第二或第三象限角,命题:,命题是命题的() A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 9.在中,如果,则角 A. B. C. D. 10.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有 A.0条 B.1条 C.2条 D.3条 11.幂函数的图象不过原点,则() A. B. C.或 D. 12.已知扇形的周长为15cm,圆心角为3rad,则此扇形的弧长为() A.3cm B.6cm C.9cm D.12cm 二、填空题(本大题共4小题,共20分) 13.如下图所示,三棱锥外接球的半径为1,且过球心,围绕棱旋转后恰好与重合.若,则三棱锥的体积为_____________. 14.定义在上的函数满足则________. 15.若,,则以、为根的一元二次方程可以是___________.(写出满足条件的一个一元二次方程即可) 16.函数一段图象如图所示,这个函数的解析式为______________. 三、解答题(本大题共6小题,共70分) 17.已知函数的定义域为,在上为增函数,且对任意的,都有 (1)试判断的奇偶性; (2)若,求实数的取值范围 18.设为平面直角坐标系中的四点,且,, (1)若,求点的坐标及; (2)设向量,,若与平行,求实数的值 19.已知函数,,且. (1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围; (2)若函数在区间上为增函数,求实数a取值范围. 20.已知函数 (1)若,,求; (2)将函数的图象先向左平移个单位长度,再把所得图象上所有点的横坐标变为原来的,纵坐标不变,得到函数的图象.求函数的单调递增区间 21.已知函数f(x)=2asin+b的定义域为,函数最大值为1,最小值为-5,求a和b的值 22.已知,, ()求及 ()若的最小值是,求的值 参考答案 一、选择题(本大题共12小题,共60分) 1、A 【解析】利用充分条件和必要条件的定义分析判断即可 【详解】当时,, 当 时,或, 所以“”是“”的充分非必要条件, 故选:A 2、C 【解析】根据命题的否定的定义判断 【详解】特称命题的否定是全称命题 命题p:“”,的否定为: 故选:C 3、C 【解析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可. 【详解】函数在上单增, 由,知, 函数的根处在里, 故选:C 4、D 【解析】直接代入,利用为奇函数的性质,得到整体的和为定值. 【详解】易知是奇函数,则 即的横坐标与纵坐标之和为定值2. 故选:D. 5、A 【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围. 【详解】由题可知,解得, 则, 故选:A 【点睛】本题考查正弦函数图像的性质与周期,属于中档题. 6、A 【解析】由幂函数,指数函数与对数函数的性质可得 【详解】解:根据题意,依次分析选项: 对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意; 对于B,,是对数函数,不是奇函数,不符合题意; 对于C,,为指数函数,不为奇函数; 对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意; 故选A 【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键 7、C 【解析】函数中,因为所以. 有. 故选C. 8、D 【解析】利用切化弦判断充分性,根据第四象限的角判断必要性. 【详解】当角为第二象限角时,, 所以, 当角为第三象限角时,, 所以, 所以命题是命题的不充分条件. 当时,显然,当角可以为第四象限角,命题是命题的不必要条件. 所以命题是命题的既不充分也不必要条件. 故选:D 9、C 【解析】由特殊角的三角函数值结合在△ABC中,可求得A的值; 【详解】, 又∵A∈(0,π), ∴ 故选C. 【点睛】本题考查了特殊角的三角函数值及三角形中角的范围,属于基础题. 10、B 【解析】数形结合分析出为定值,因此为定值, 从而确定直线AB只有一条. 【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条. 故选:B 【点睛】本题考查直线与圆的实际应用,属于中档题. 11、B 【解析】根据幂函数的性质求参数. 【详解】是幂函数 ,解得或 或 幂函数的图象不过原点 ,即 故选:B 12、C 【解析】利用扇形弧长公式进行求解. 【详解】设扇形弧长为l cm,半径为r cm,则,即且,解得:(cm),故此扇形的弧长为9cm. 故选:C 二、填空题(本大题共4小题,共20分) 13、 【解析】作于,可证得平面,得,得等边三角形,利用是球的直径,得,然后计算出,再应用棱锥体积公式计算体积 【详解】∵围绕棱旋转后恰好与重合, ∴, 作于,连接,则,, ∴ 又过球心,∴,而,∴,同理, ,, 由,,,得平面, ∴ 故答案为: 【点睛】易错点睛:本题考查求棱锥的体积,解题关键是作于,利用旋转重合,得平面,这样只要计算出的面积,即可得体积,这样作图可以得出,为旋转所形成的二面角的平面角,这里容易出错在误认为旋转,即为.旋转是旋转形成的二面角为.应用作出二面角的平面角 14、 【解析】表示周期为3的函数,故,故可以得出结果 【详解】解: 表示周期为3的函数, 【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题 15、 【解析】利用两数和的完全平方公式得到,再利用根与系数的关系写出一个满足条件的方程. 【详解】因为,, 所以 , 即该一元二次方程的两根之和为3,两根之积为2, 所以以、为根的一元二次方程可以是. 16、 【解析】由图象的最大值求出A,由周期求出ω,通过图象经过(,0),求出φ,从而得到函数的解析式 【详解】由函数的图象可得A=2, T==4π, ∴解得ω= ∵图象经过(,0),∴可得:φ=2kπ,k∈Z,解得:φ=2kπ,k∈Z, 取k=0∴φ, 故答案为:y=2sin(x) 三、解答题(本大题共6小题,共70分) 17、(1)奇函数(2) 【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可; (2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可. 【小问1详解】 因为函数定义域为, 令,得.令,得, 即,所以函数为奇函数 【小问2详解】 由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数 因为,即, 所以,解得,所以实数的取值范围为 18、(1),;(2) 【解析】(1)设,写出的坐标,利用列式求解点的坐标,再写出的坐标;(2)用坐标表示出与,再根据平行条件的坐标公式列式求解. 【详解】(1)设,因为,,,所以,得,则; (2)由题意,,,所以,,因为与平行,所以,解得. 19、(1)..(2) 【解析】(1)由求得,作出函数图象可知的范围; (2)由函数图象可知区间所属范围,列不等式示得结论 【详解】(1)因为,所以. 函数的大致图象如图所示 令,得. 故有3个不同的零点. 即方程有3个不同的实根. 由图可知. (2)由图象可知,函数在区间和上分别单调递增. 因为,且函数在区间上为增函数, 所以可得,解得. 所以实数a的取值范围为. 【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题 20、(1) (2) 【解析】(1)由平方关系求出,再由求解即可; (2)由伸缩变换和平移变换得出的解析式,再由正弦函数的性质得出函数的单调递增区间 【小问1详解】 依题意, 因为,所以,所以 从而 【小问2详解】 将函数的图象先向左平移个单位长度,得到函数的图象 再把所得图象上所有点的横坐标变为原来的,得到函数的图象 令,的单调递增区间是 所以,,解得, 所以函数的单调递增区间为 21、a=12-6,b=-23+12,或a=-12+6,b=19-12. 【解析】∵0≤x≤,∴-≤2x-≤. ∴-≤sin≤1. 若a>0,则, 解得, 若a<0,则, 解得, 综上可知,a=12-6,b=-23+12,或a=-12+6,b=19-12. 22、(1);(2). 【解析】(1)利用平面向量的数量积公式、模长公式求解; (2)将的值域,转化为关于的一元二次函数的值域,根据 【详解】(1), , (2),, , , 当时,当且仅当时,取最小值,解得; 当时,当且仅当时,取最小值,解得(舍); 当时,当且仅当时,取最小值,解得(舍去), 综上所述,. 【点睛】本题主要考查求平面向量的数量积,向量的模,以及由函数的最值求参数的问题,熟记平面向量数量积的坐标表示,向量模的坐标表示,以及三角函数的性质即可,属于常考题型.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 赣州市 红旗 实验 中学 高一上 数学 期末 综合测试 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文