福建省福州市罗源第一中学2022-2023学年数学高一上期末联考试题含解析.doc
《福建省福州市罗源第一中学2022-2023学年数学高一上期末联考试题含解析.doc》由会员分享,可在线阅读,更多相关《福建省福州市罗源第一中学2022-2023学年数学高一上期末联考试题含解析.doc(13页珍藏版)》请在咨信网上搜索。
2022-2023学年高一上数学期末模拟试卷 注意事项 1.考生要认真填写考场号和座位序号。 2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。 3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1.已知角的顶点在原点,始边与轴正半轴重合,终边上有一点,,则( ) A. B. C. D. 2.已知函数,则() A.3 B.2 C.1 D.0 3.已知命题,;命题,.若,都是假命题,则实数的取值范围为() A. B. C.或 D. 4.函数部分图象如图所示,则下列结论错误的是() A.频率为 B.周期为 C.振幅为2 D.初相为 5.已知H是球的直径AB上一点,AH:HB=1:2,AB⊥平面,H为垂足,截球所得截面的面积为,则球的表面积为 A. B. C. D. 6.设集合,则是 A. B. C. D.有限集 7.的值等于( ) A. B. C. D. 8.函数的定义域是( ) A. B. C. D. 9.已知集合,集合,则() A. B. C. D. 10.已知函数则函数的最大值是 A.4 B.3 C.5 D. 11.在内,不等式解集是( ) A. B. C. D. 12.已知函数,则的最大值为( ) A. B. C. D. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13.已知函数 ①当a=1时,函数的值域是___________; ②若函数的图像与直线y=1只有一个公共点,则实数a的取值范围是___________ 14.设,则______. 15.函数(且)的图象恒过定点_________ 16.集合,用列举法可以表示为_________ 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17.(1)计算:. (2)若,求的值. 18.(1)计算:. (2)化简:. 19.已知函数为偶函数 (1)求实数的值; (2)记集合,,判断与的关系; (3)当时,若函数值域为,求的值. 20.函数是定义在上的奇函数,且 (1)确定的解析式 (2)判断在上的单调性,并利用函数单调性的定义证明; (3)解关于的不等式 21.已知f(x)=log3x. (1)作出这个函数图象; (2)若f(a)<f(2),利用图象求a的取值范围 22.已知函数, (1)若,求在区间上的最小值; (2)若在区间上有最大值3,求实数的值. 参考答案 一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.) 1、B 【解析】由三角函数定义列式,计算,再由所给条件判断得解. 【详解】由题意知,故,又, ∴. 故选:B 2、B 【解析】先求值,再计算即可. 【详解】, , 故选:B 点睛】本题主要考查了分段函数求函数值,属于基础题. 3、B 【解析】写出命题p,q的否定命题,由题意得否定命题为真命题,解不等式,即可得答案. 【详解】因为命题p为假命题,则命题p的否定为真命题,即:为真命题, 解得, 同理命题q为假命题,则命题q的否定为真命题,即为真命题, 所以,解得或, 综上:, 故选:B 【点睛】本题考查命题的否定,存在量词命题与全程量词命题的否定关系,考查分析理解,推理判断的能力,属基础题. 4、A 【解析】根据图象可得、,然后利用求出即可. 【详解】由图可知,C正确; ,则,,B正确;,A错误; 因为,则,即, 又,则,D正确 故选:A 5、D 【解析】设球的半径为,根据题意知由与球心距离为的平面截球所得的截面圆的面积是,我们易求出截面圆的半径为1,根据球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,我们易求出该球的半径,进而求出球的表面积 【详解】设球的半径为,∵, ∴平面与球心的距离为, ∵截球所得截面的面积为,∴时,, 故由得, ∴,∴球的表面积,故选D 【点睛】本题主要考查的知识点是球的表面积公式,若球的截面圆半径为,球心距为,球半径为,则球心距、截面圆半径、球半径构成直角三角形,满足勾股定理,属于中档题. 6、C 【解析】根据二次函数和指数函数的图象和性质,分别求出两集合中函数的值域,求出两集合的交集即可 【详解】由集合S中的函数y=3x>0,得到集合S={y|y>0}; 由集合T中的函数y=x2﹣1≥﹣1,得到集合T={y|y≥﹣1},则S∩T=S 故选C 【点睛】本题属于求函数值域,考查了交集的求法,属于基础题 7、D 【解析】利用诱导公式可求得的值. 【详解】. 故选:D 8、C 【解析】函数式由两部分构成,且每一部分都是分式,分母又含有根式,求解时既保证分式有意义,还要保证根式有意义 【详解】解:要使原函数有意义,需解得,所以函数的定义域为.故选C 【考点】函数的定义域及其求法 【点睛】先把函数各部分的取值范围确定下来,然后求它们的交集是解决本题的关键 9、C 【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可. 【详解】集合, 则 集合, , 故选:C. 【点睛】本题考查了集合的基本运算,属于基础题. 10、B 【解析】,从而当时,∴的最大值是 考点:与三角函数有关的最值问题 11、C 【解析】根据正弦函数的图象和性质,即可得到结论 【详解】解:在[0,2π]内, 若sinx,则x, 即不等式的解集为(,), 故选:C 【点睛】本题主要考查利用三角函数的图象与性质解不等式,考查数形结合的思想,属于基础题 12、D 【解析】令,可得出,令,证明出函数在上为减函数,在上为增函数,由此可求得函数在区间上的最大值,即为所求. 【详解】令,则,则, 令,下面证明函数在上为减函数,在上为增函数, 任取、且,则, ,则,,,, 所以,函数在区间上为减函数, 同理可证函数在区间上为增函数, ,,. 因此,函数的最大值为. 故选:D. 【点睛】方法点睛:利用函数的单调性求函数最值的基本步骤如下: (1)判断或证明函数在区间上的单调性; (2)利用函数的单调性求得函数在区间上的最值. 二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、 ①.(-∞,1] ②.(-1,1] 【解析】①分段求值域,再求并集可得的值域; ②转化为=在上与直线只有一个公共点,分离a求值域可得实数a的取值范围 【详解】①当a=1时,即当x≤1时,, 当x>1时,, 综上所述当a=1时,函数的值域是, ②由无解, 故=在上与直线只有一个公共点, 则有一个零点,即实数的取值范围是. 故答案为:;. 14、1 【解析】根据指数式与对数式的互化,得到,,再结合对数的运算法则,即可求解. 【详解】由,可得,, 所以. 故答案为:. 15、 【解析】令对数的真数为,即可求出定点的横坐标,再代入求值即可; 【详解】解:因为函数(且), 令,解得,所以,即函数恒过点; 故答案为: 16、## 【解析】根据集合元素属性特征进行求解即可. 【详解】因为,所以,可得,因为,所以,集合 故答案为: 三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。) 17、(1);(2) 【解析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果; (2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果. 【详解】解:(1)原式 . (2)因为, 所以 . 18、(1);(2) 【解析】(1)根据分数指数幂及对数的运算法则计算可得; (2)利用诱导公式及特殊值的三角函数值计算可得; 【详解】解:(1) (2) 19、(1);(2);(3). 【解析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合 ,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值. 试题解析:(1)为偶函数,. (2)由(1)可知:,当时,;当时,. ,. (3). 上单调递增,, 为的两个根,又由题意可知:,且. 考点:1、函数的奇偶性及值域;2、对数的运算. 20、(1) (2)增函数,证明见解析 (3) 【解析】(1)根据奇偶性的定义与性质求解 (2)由函数的单调性的定义证明 (3)由函数奇偶性和单调性,转化不等式后再求解 【小问1详解】 根据题意,函数是定义在上的奇函数, 则,解可得; 又由,则有,解可得; 则 【小问2详解】 由(1)的结论,,在区间上为增函数; 证明:设, 则 又由, 则,,,, 则,即 则函数在上为增函数. 【小问3详解】 由(1)(2)知为奇函数且在上为增函数. , 解可得:, 即不等式的解集为. 21、(1)见解析(2)0<a<2. 【解析】(1)有对数函数作数图像; (2) 利用图象可求a的取值范围 【详解】(1)作出函数y=log3x的图象如图所示 (2)令f(x)=f(2),即log3x=log32,解得x=2. 由图象知,当0<a<2时, 恒有f(a)<f(2) ∴所求a的取值范围为0<a<2. 【点睛】本题考查对数函数的图像和性质,属基础题. 22、(1);(2)或. 【解析】(1)先求函数对称轴,再根据对称轴与定义区间位置关系确定最小值取法(2)根据对称轴与定义区间位置关系三种情况分类讨论最大值取法,再根据最大值为3,解方程求出实数的值 试题解析:解:(1)若,则 函数图像开口向下,对称轴为,所以函数在区间上是单调递增的,在区间上是单调递减的,有又, (2)对称轴为 当时,函数在在区间上是单调递减的,则 ,即; 当时,函数在区间上是单调递增的,在区间上是单调递减的,则,解得,不符合; 当时,函数在区间上是单调递增的,则 ,解得; 综上所述,或 点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 福建省 福州市 罗源 第一 中学 2022 2023 学年 数学 上期 联考 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文