一元二次方程及其解法(一)--直接开平方法—知识讲解(提高).doc
《一元二次方程及其解法(一)--直接开平方法—知识讲解(提高).doc》由会员分享,可在线阅读,更多相关《一元二次方程及其解法(一)--直接开平方法—知识讲解(提高).doc(4页珍藏版)》请在咨信网上搜索。
一元二次方程及其解法(一)直接开平方法—知识讲解(提高) 【学习目标】 1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式; 2.掌握直接开平方法解方程,会应用此判定方法解决有关问题; 3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想. 【要点梳理】 要点一、一元二次方程的有关概念 1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可. 2.一元二次方程的一般形式: 一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项. 要点诠释: (1)只有当时,方程才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号. 3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 4.一元二次方程根的重要结论 (1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0. (2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0. (3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0. 要点二、一元二次方程的解法 1.直接开方法解一元二次方程: (1)直接开方法解一元二次方程: 利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法. (2)直接开平方法的理论依据: 平方根的定义. (3)能用直接开平方法解一元二次方程的类型有两类: ①形如关于x的一元二次方程,可直接开平方求解. 若,则;表示为,有两个不等实数根; 若,则x=O;表示为,有两个相等的实数根; 若,则方程无实数根. ②形如关于x的一元二次方程,可直接开平方求解,两根是 . 要点诠释: 用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根. 【典型例题】 类型一、关于一元二次方程的判定 1.判定下列方程是否关于x的一元二次方程: (1)a2(x2-1)+x(2x+a)=3x+a; (2)m2(x2+m)+2x=x(x+2m)-1. 【答案与解析】 (1)经整理,得它的一般形式 (a2+2)x2+(a-3)x-a(a+1)=0, 其中,由于对任何实数a都有a2≥0,于是都有a2+2>0,由此可知a2+2≠0,所以可以判定: 对任何实数a,它都是一个一元二次方程. (2)经整理,得它的一般形式 (m2-1)x2+(2-2m)x+(m3+1)=0, 其中,当m≠1且m≠-1时,有m2-1≠0,它是一个一元二次方程;当m=1时方程不存在, 当m=-1时,方程化为4x=0,它们都不是一元二次方程. 【总结升华】对于含有参数的一元二次方程,要十分注意二次项系数的取值范围,在作为一元二次方程进行 研究讨论时,必须确定对参数的限制条件.如在第(2)题,对参数的限定条件是m≠±1. 例如,一个关于x的方程,若整理为(m-4)x2+mx-3=0的形式,仅当m-4≠0,即m≠4时,才是一元二次方程(显然,当m=4时,它只是一个一元一次方程4x-3=0).又如,当我们说:“关于x的一元二次方程(a-1)x2+(2a+1)x+a2-1=0……”时,实际上就给出了条件“a-1≠0”,也就是存在一个条件“a≠1”.由于这个条件没有直接注明,而是隐含在其他的条件之中,所以称它为“隐含条件”. 类型二、一元二次方程的一般形式、各项系数的确定 2. 已知关于y的一元二次方程m2(y2+m)-3my=y(8y-1)+1,求出它各项的系数,并指出参数m的取值范围. 【答案与解析】 将原方程整理为一般形式,得(m2-8)y2-(3m-1)y+m3-1=0, 由于已知条件已指出它是一个一元二次方程,所以存在一个隐含条件 m2-8≠0,即 m≠±. 可知它的各项系数分别是 a=m2-8(m≠±),b=-(3m-1),c=m3-1. 参数m的取值范围是不等于±的一切实数. 【总结升华】在含参数的方程中,要认定哪个字母表示未知数,哪个字母是参数,才能正确处理有关的问题. 举一反三: 【高清ID号:388447 关联的位置名称(播放点名称):一元二次方程的系数与解—练习1(3)】 【变式】关于x的方程的一次项系数是-1,则a . 【答案】原方程化简为x2-ax+1=0,则-a=-1,a=1. 类型三、一元二次方程的解(根) 3. (2015•杭州模拟)关于x的方程a(x+m)2+n=0(a,m,n均为常数,m≠0)的解是x1=﹣2,x2=3,则方程a(x+m﹣5)2+n=0的解是( ) A.x1=﹣2,x2=3 B.x1=﹣7,x2=﹣2 C.x1=3,x2=﹣2 D.x1=3,x2=8 【答案】D; 【思路点拨】把后面一个方程中的x﹣5看作整体,相当于前面一个方程中的x求解. 【解析】∵关于x的方程a(x+m)2+n=0的解是x1=﹣2,x2=3,(m,n,p均为常数,m≠0), ∴方程a(x+m﹣5)2+n=0变形为a[(x﹣5)+m]2+n=0,即此方程中x﹣5=﹣2或x﹣5=3, 解得x=3或x=8.故选D. 【总结升华】此题主要考查了方程解的定义.注意由两个方程的特点进行简便计算. 举一反三: 【高清ID号:388447 关联的位置名称(播放点名称):一元二次方程的系数与解——练习2】 【变式】(1)x=1是的根,则a= . (2)已知关于x的一元二次方程 有一个根是0,求m的值. 【答案】(1)当x=1时,1-a+7=0,解得a=8. (2)由题意得 类型四、用直接开平方法解一元二次方程 4.解方程(x-3)2=49. 【答案与解析】 把x-3看作一个整体,直接开平方,得 x-3=7或x-3=-7. 由x-3=7,得 x=10. 由x-3=-7,得 x=-4. 所以原方程的根为x=10或x=-4. 【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方 程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标. 举一反三: 【变式】解方程: (1) (2014秋•宝安区期末)(3x+2)2=4(x﹣1)2; (2) (2014•锡山区期中) (x-2)2=25. 【答案】解:(1) 3x+2=±2(x﹣1), ∴3x+2=2x﹣2或3x+2=﹣2x+2, ∴x1=﹣4;x2=0. (2) (x-2)=±5 ∴x-2=5或x-2=-5 ∴x1=7,x2=-3.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一元 二次方程 及其 解法 直接 开平 方法 知识 讲解 提高
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文