九年级数学下册-第1章-二次函数课时练习湘教版.doc
《九年级数学下册-第1章-二次函数课时练习湘教版.doc》由会员分享,可在线阅读,更多相关《九年级数学下册-第1章-二次函数课时练习湘教版.doc(33页珍藏版)》请在咨信网上搜索。
1、九年级数学下册 第1章 二次函数课时练习湘教版九年级数学下册 第1章 二次函数课时练习湘教版年级:姓名:33二次函数与一元二次方程一、选择题(共14小题)1小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A无解Bx=1Cx=4Dx=1或x=42下列关于二次函数y=ax22ax+1(a1)的图象与x轴交点的判断,正确的是()A没有交点B只有一个交点,且它位于y轴右侧C有两个交点,且它们均位于y轴左侧D有两个交点,且它们均位于y轴右侧3二次函数y=a(x4)24(a0)的图象在2x3这一段位于x轴的下方,在6x7这一段位于x轴的上方,则a的值为()A1B1C
2、2D24若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()Ax1=0,x2=4Bx1=1,x2=5Cx1=1,x2=5Dx1=1,x2=55已知抛物线y=x2+x+6与x轴交于点A,点B,与y轴交于点C若D为AB的中点,则CD的长为()ABCD6如图,抛物线y=2x2+8x6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A2mB3mC3m2D3m7二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),
3、B(x2,0),且x1x2,点P(m,n)是图象上一点,那么下列判断正确的是()A当n0时,m0B当n0时,mx2C当n0时,x1mx2D当n0时,mx18如图,二次函数y=ax2+bx+c的图象与x轴相交于(2,0)和(4,0)两点,当函数值y0时,自变量x的取值范围是()Ax2B2x4Cx0Dx49下列图形中阴影部分的面积相等的是()ABCD10已知抛物线y=x2x1与x轴的一个交点为(m,0),则代数式m2m+2014的值为()A2012B2013C2014D201511“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根”
4、请根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)=0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb12设二次函数y1=a(xx1)(xx2)(a0,x1x2)的图象与一次函数y2=dx+e(d0)的图象交于点(x1,0),若函数y=y1+y2的图象与x轴仅有一个交点,则()Aa(x1x2)=dBa(x2x1)=dCa(x1x2)2=dDa(x1+x2)2=d13若二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1x2,图象上有一点M(x0,y0),在x轴下方,则
5、下列判断正确的是()Aa(x0x1)(x0x2)0Ba0Cb24ac0Dx1x0x214二次函数y=ax2+bx+c(a0,a,b,c为常数)的图象如图,ax2+bx+c=m有实数根的条件是()Am2Bm5Cm0Dm4二、填空题(共6小题)15关于x的一元二次方程ax23x1=0的两个不相等的实数根都在1和0之间(不包括1和0),则a的取值范围是16已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C,我们称以A为顶点且过点C,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC为抛物线p的“梦之星”直线若一条抛物线的“梦之
6、星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为17如图,抛物线y=ax2+bx+c(a0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a2b+c的值为18已知抛物线y=ax2+bx+c(a0)与x轴交于A,B两点,若点A的坐标为(2,0),抛物线的对称轴为直线x=2,则线段AB的长为19已知抛物线y=ax2+bx+c与x轴的公共点是(4,0),(2,0),则这条抛物线的对称轴是直线20已知抛物线y=x2k的顶点为P,与x轴交于点A,B,且ABP是正三角形,则k的值是三、解答题(共10小题)21已知抛物线y=(xm)2(
7、xm),其中m是常数(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=求该抛物线的函数解析式;把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点22如图,抛物线y=x2+bx+c经过点A(1,0),B(3,0)请解答下列问题:(1)求抛物线的解析式;(2)点E(2,m)在抛物线上,抛物线的对称轴与x轴交于点H,点F是AE中点,连接FH,求线段FH的长注:抛物线y=ax2+bx+c(a0)的对称轴是x=23已知关于x的一元二次方程:x2(m3)xm=0(1)试判断原方程根的情况;(2)若抛物线y=x2(m3)xm与x轴交于A(x1
8、,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由(友情提示:AB=|x2x1|)24已知关于x的方程kx2+(2k+1)x+2=0(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标25已知二次函数y=x2+2x+m(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2
9、)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标26如图,二次函数的图象与x轴交于A(3,0)和B(1,0)两点,交y轴于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D(1)请直接写出D点的坐标(2)求二次函数的解析式(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围27抛物线y=x24x+3与x轴交于A、B两点(点A在点B的左侧),点C是此抛物线的顶点(1)求点A、B、C的坐标;(2)点C在反比例函数y=(k0)的图象上,求反比例函数的解析式28已知二次函数y=x24x+3(1)用配方
10、法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及ABC的面积29如图,抛物线y=x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作MEy轴于点E,连结BE交MN于点F,已知点A的坐标为(1,0)(1)求该抛物线的解析式及顶点M的坐标(2)求EMF与BNF的面积之比30已知二次函数y=x22mx+m2+3(m是常数)(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?2016年人教版九年级数学上册同步测试:22.
11、2 二次函数与一元二次方程参考答案与试题解析一、选择题(共14小题)1小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax+b=0的解是()A无解Bx=1Cx=4Dx=1或x=4【考点】抛物线与x轴的交点【分析】关于x的方程x2+ax+b=0的解是抛物线y=x2+ax+b与x轴交点的横坐标【解答】解:如图,函数y=x2+ax+b的图象与x轴交点坐标分别是(1,0),(4,0),关于x的方程x2+ax+b=0的解是x=1或x=4故选:D【点评】本题考查了抛物线与x轴的交点求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,
12、解关于x的一元二次方程即可求得交点横坐标2下列关于二次函数y=ax22ax+1(a1)的图象与x轴交点的判断,正确的是()A没有交点B只有一个交点,且它位于y轴右侧C有两个交点,且它们均位于y轴左侧D有两个交点,且它们均位于y轴右侧【考点】抛物线与x轴的交点【专题】压轴题【分析】根据函数值为零,可得相应的方程,根据根的判别式,公式法求方程的根,可得答案【解答】解:当y=0时,ax22ax+1=0,a1=(2a)24a=4a(a1)0,ax22ax+1=0有两个根,函数与有两个交点,x=0,故选:D【点评】本题考查了抛物线与x轴的交点,利用了函数与方程的关系,方程的求根公式3二次函数y=a(x4
13、)24(a0)的图象在2x3这一段位于x轴的下方,在6x7这一段位于x轴的上方,则a的值为()A1B1C2D2【考点】抛物线与x轴的交点【分析】根据抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1x2这一段位于x轴的上方,而抛物线在2x3这一段位于x轴的下方,于是可得抛物线过点(2,0),然后把(2,0)代入y=a(x4)24(a0)可求出a的值【解答】解:抛物线y=a(x4)24(a0)的对称轴为直线x=4,而抛物线在6x7这一段位于x轴的上方,抛物线在1x2这一段位于x轴的上方,抛物线在2x3这一段位于x轴的下方,抛物线过点(2,0),把(2,0)代入y=a(x4)24(
14、a0)得4a4=0,解得a=1故选A【点评】本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标=b24ac决定抛物线与x轴的交点个数:=b24ac0时,抛物线与x轴有2个交点;=b24ac=0时,抛物线与x轴有1个交点;=b24ac0时,抛物线与x轴没有交点4若二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程x2+bx=5的解为()Ax1=0,x2=4Bx1=1,x2=5Cx1=1,x2=5Dx1=1,x2=5【考点】抛物线与x
15、轴的交点【分析】根据对称轴方程=2,得b=4,解x24x=5即可【解答】解:对称轴是经过点(2,0)且平行于y轴的直线,=2,解得:b=4,解方程x24x=5,解得x1=1,x2=5,故选:D【点评】本题主要考查二次函数的对称轴和二次函数与一元二次方程的关系,难度不大5已知抛物线y=x2+x+6与x轴交于点A,点B,与y轴交于点C若D为AB的中点,则CD的长为()ABCD【考点】抛物线与x轴的交点【专题】压轴题【分析】令y=0,则x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可【解答】解:令y=0,则x2+x+6=
16、0,解得:x1=12,x2=3A、B两点坐标分别为(12,0)(3,0)D为AB的中点,D(4.5,0),OD=4.5,当x=0时,y=6,OC=6,CD=故选:D【点评】本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键6如图,抛物线y=2x2+8x6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A2mB3mC3m2D3m【考点】抛物线与x轴的交点;二次函数图象与几何变换【专题】压轴题【分析】首先求出点A和点B的坐标,然后求
17、出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案【解答】解:令y=2x2+8x6=0,即x24x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=2(x4)2+2(3x5),当y=x+m1与C2相切时,令y=x+m1=y=2(x4)2+2,即2x215x+30+m1=0,=8m115=0,解得m1=,当y=x+m2过点B时,即0=3+m2,m2=3,当3m时直线y=x+m与C1、C2共有3个不同的交点,故选:D【点评】本题主要考查抛物线与x轴交点以及二次函数图象与几
18、何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度7二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1x2,点P(m,n)是图象上一点,那么下列判断正确的是()A当n0时,m0B当n0时,mx2C当n0时,x1mx2D当n0时,mx1【考点】抛物线与x轴的交点【分析】首先根据a确定开口方向,再确定对称轴,根据图象分析得出结论【解答】解:a=10,开口向上,抛物线的对称轴为:x=,二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1x2,无法确定x1与x2的正负情况,当n0时,x1mx2,但m的正
19、负无法确定,故A错误,C正确;当n0时,mx1 或mx2,故B,D错误,故选C【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键8如图,二次函数y=ax2+bx+c的图象与x轴相交于(2,0)和(4,0)两点,当函数值y0时,自变量x的取值范围是()Ax2B2x4Cx0Dx4【考点】抛物线与x轴的交点【分析】利用当函数值y0时,即对应图象在x轴上方部分,得出x的取值范围即可【解答】解:如图所示:当函数值y0时,自变量x的取值范围是:2x4故选:B【点评】此题主要考查了抛物线与x轴的交点,利用数形结合得出是解题关键9下列图形中阴影部分的面积相等的是
20、()ABCD【考点】抛物线与x轴的交点;正比例函数的性质;一次函数图象上点的坐标特征;反比例函数系数k的几何意义【分析】首先根据各图形的函数解析式求出函数与坐标轴交点的坐标,进而可求得各个阴影部分的面积,进而可比较出个阴影部分面积的大小关系【解答】解:图中的函数为正比例函数,与坐标轴只有一个交点(0,0),由于缺少条件,无法求出阴影部分的面积;:直线y=x+2与坐标轴的交点坐标为:(2,0),(0,2),故S阴影=22=2;:此函数是反比例函数,那么阴影部分的面积为:S=xy=4=2;:该抛物线与坐标轴交于:(1,0),(1,0),(0,1),故阴影部分的三角形是等腰直角三角形,其面积S=21
21、=1;的面积相等,故选:A【点评】此题主要考查了函数图象与坐标轴交点坐标的求法以及图形面积的求法,是基础题,熟练掌握各函数的图象特点是解决问题的关键10已知抛物线y=x2x1与x轴的一个交点为(m,0),则代数式m2m+2014的值为()A2012B2013C2014D2015【考点】抛物线与x轴的交点【分析】把x=m代入方程x2x1=0求得m2m=1,然后将其整体代入代数式m2m+2014,并求值【解答】解:抛物线y=x2x1与x轴的一个交点为(m,0),m2m1=0,解得 m2m=1m2m+2014=1+2014=2015故选:D【点评】本题考查了抛物线与x轴的交点解题时,注意“整体代入”
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 九年级 数学 下册 二次 函数 课时 练习 湘教版
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。