列方程解应用题专题.doc
《列方程解应用题专题.doc》由会员分享,可在线阅读,更多相关《列方程解应用题专题.doc(8页珍藏版)》请在咨信网上搜索。
(完整版)列方程解应用题专题 列方程解应用题专题 列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值。列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系从而建立方程.而找出等量关系又在于熟练运用数量之间的各种已知条件。掌握这两点就能正确地列出方程。 列方程解应用题的一般步骤是: (1).审:审请题意,弄清题目中的数量关系; (2)。设:用字母表示题目中的一个未知数; (3)。找:找出题目中的等量关系; (4)。列:根据所设未知数和找出的等量关系列方程; (5)。解:解方程,求未知数; ( 6).答:检验所求解,写出答案。 实际问题中,设未知数的方法可能不唯一,要寻找最简捷的设法;解题时,检验过程不可少,但可不写在书面上。 用列方程解应用题的几个注意事项: (1)先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理。 (2)所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. (3)要养成“验”的好习惯,即所求结果要使实际问题有意义. (4)不要漏写“答”,“设”和“答”都不要丢掉单位名称。 (5)分析过程可以只写在草稿纸上,但一定要认真。 例1 列方程,并求出方程的解. (1) 减去一个数,所得差与1。35加上 的和相等,求这个数。 解:设这个数为x.则依题意有 -x=1。35+ 检验:把X= 代入原方程,左边= ,与右边相等。所以X= 是方程的解. (2)某数的比它的倍少11,求某数. 解:设某数为X。依题意,有: 例2 商店有胶鞋、布鞋共46双,胶鞋每双7。5元,布鞋每双5.9元,全部卖出后,胶鞋比布鞋多收入10元.问:胶鞋有多少双? 分析:此题几个数量之间的关系不容易看出来,用方程法却能清楚地把它们的关系表达出来。 设胶鞋有x双,则布鞋有(46—x)双。胶鞋销售收入为7。5x元,布鞋销售收入为5.9(46—x)元,根据胶鞋比布鞋多收入10元可列出方程。 解:设有胶鞋x双,则有布鞋(46-x)双。 7。5x-5。9(46—x)=10, 7。5x-271。4+5.9x=10, 13.4x=281.4, x=21。 答:胶鞋有21双。 例2袋子里有红、黄、蓝三种颜色的球,黄球个数是红球的4/5,蓝球的个数是红球的2/3,黄球个数的3/4比蓝球少2个。袋中共有多少个球? 分析:因为题目条件下中黄球、蓝球个数都是与红球个数进行比较,所以高红球个数为X比较简单。再根据黄球个数的3/4比蓝球少2个,可列出方程。 解:设红球个数为X,则黄球个数为4/5X,蓝球个数为2/3X. 2/3X—4/5X乘3/4=2 X=30 X+4/5X+2/3X=30+24+20=74(个) 答:袋中共有74个球。 在例2中,求胶鞋有多少双,我们设胶鞋有x双;在例3中,求袋中共有多少个球,我们设红球有x个,求出红球个数后,再求共有多少个球。像例2那样,直接设题目所求的未知数为x,即求什么设什么,这种方法叫直接设元法;像例3那样,为解题方便,不直接设题目所求的未知数,而间接设题目中另外一个未知数为x,这种方法叫间接设元法.具体采用哪种方法,要看哪种方法简便。在小学阶段,大多数题目可以使用直接设元法。 例4 已知篮球、足球、排球平均每个36元,篮球比排球每个多10元,足球比排球每个多8元,每个足球多少元? 分析:①篮球、足球、排球平均每个36元,购买三种球的总价是:36×3=108(元)。 ②篮球和足球都与排球比,所以把排球的单价作为标准量,设为X。 ③列方程时,等量关系可以确定为分类购球的总价=平均值导出的总价。 解:设每个排球X元,则每个篮球(X+10)元,每个足球(X+8)元。依题意,有: X+X+10+X+8=36×3 3X+18=108 3X=90 X=30 X+8=30+8=38 答:每个足球38元。 例5 妈妈买回一筐苹果,按计划天数,如果每天吃4个,则多出48个,如果每天吃6个,则又少8个苹果。问:妈妈买回苹果多少个?计划吃多少天? 分析1根据已知条件分析出,每天吃苹果的个数及吃若干天后剩下苹果的个数是变量,而苹果的总个数是不变量.因此列出方程的等量关系是苹果总个数=苹果总个数。方程左边,第一种方案下每天吃的个数×天数+剩下的个数,等于右边,第二种方案下每天吃的个数×天数-所差的个数。 解:设原计划吃X天。 4X+48=6X-8 2X=56 X=28 苹果个数:4×28+48=160 答:妈妈买回苹果160个,原计划吃28天. 分析2 列方程等量关系确定为计划吃的天数=计划吃的天数。 解:设妈妈公买回苹果X个。 例6 甲、乙、丙、丁四人共做零件270个。如果甲多做10个,乙少做10个,丙的个数乘以2,丁做的个数除以2,那么四人做的零件数恰好相等。问:丙实际做了多少个?(这是设间接未知数的例题) 分析:根据“那么四人做的零件数恰好相等”,把这个零件相等的数设为X,从而得出: 甲+10=乙-10=丙×2=丁÷2=X 根据这个等式又可以推出:甲+10=X,(甲=X-10); 乙-10=X, (乙=X+10); 丙×2=X, (丙= ); 丁÷2=X,(丁=2X)。 又根据甲、乙、丙、丁四人共做零件270个,可以得到一个方程,它的左边表示零件的总个数,右边也表示零件的总个数. 解:设变换后每人做的零件数为X个。 X-10+X+10+2X+ =270 2X+2X+X+4X=540 9X=540 X=60 ∵丙×2=X=60, ∴丙=30 答:丙实际做零件30个。 例7 一块长方形的地,长和宽的比是5:3,长比宽多24米,这块地的面积是多少平方米? 分析:要想求出这块地的面积,必须求出长和宽各是多少米.已知条件中给出长和宽的比是5:3,又知道长比宽多24米。如果把宽设为X米,则长为(X+24)米,这样确定方程左边表示长与宽的比等于右边长与宽的比,再列出方程。 解:设长方形的宽是X米,长是(X+24)米。 5X=3X+72 2X=72 X=36 X+24=36+24=60, 60×36=2160(平方米)。 答:这块地的面积是2160平方米。 例8 某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若 每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3 .问:计划修建住宅多少座? 分析与解一:用直接设元法。设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程 80x-40=(30x+40)×2, 80x-40=60x+80, 20x=120, x=6 分析与解二:用间接设元法.设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程. (x—40)×80=(2x+40)×30, 80x—3200=60x+1200, 20x=4400, x=220 由灰砖有220米3,推知修建住宅(220—40)÷30=6(座)。 同理,也可设有红砖x米3。 例9 教室里有若干学生,走了10个女生后,男生是女生人数的2倍,又走了9个男生后,女生是男生人数的5倍。问:最初有多少个女生? 分析与解:设最初有x个女生,则男生最初有(x-10)×2个。根据走了10个女生、9个男生后,女生是男生人数的5倍,可列方程 x-10=[(x-10)×2—9]×5, x—10=(2x—29)×5, x-10=10x—145, 9x=135, x=15(个)。 练习 1、甲、乙二人共存款100元,如果甲取4/9,乙取出2/7,那么两人存款还剩60元。问:甲、乙二人各有存款多少元? 2.妈妈带一些钱去买布。买2米布后还剩下1。80元;如果买同样的布4米则差2.40元。问:妈妈带了多少钱? 3.第一车间个人人数是第二车间工人人数的3倍.如果从第一车间调20名工人去第二车间,则两个车间人数相等.求原来两个车间各有工人多少名? 4。两个水池共贮水40吨,甲池贮进4吨,乙池放出8吨,甲池水的吨数与乙池水的吨数相等,两个水池原来各贮水多少吨? 5.两堆煤,甲堆煤有4。5吨,乙堆煤油6吨,甲堆煤每天用去0。36吨,乙堆煤每天用去0。51吨。几天后两堆煤剩下吨数相等? 6。小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球数增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人球的个数就一样多了。求原来每个人各有几个球? 7.把一堆苹果装在一些箱子里。如果每箱装10千克,还有160千克无法装;如果每箱多装2千克,则正好装完。这堆苹果共重多少千克? 8、电动机车和磁悬浮列车从相距28千米的两地同时出发相对而行,磁悬浮列车的速度比电动机车速度的5倍还快20千米/小时,半小时后相遇。两车的速度各是多少? 电动机车和磁悬浮列车从相距28千米的两地同时出发相对而行,磁悬浮列车的速度比电动机车速度的5倍还快20千米/小时,半小时后相遇。两车的速度各是多少? 解,设电动机车速度是X,那么磁悬浮列车速度是5x+20,得: (x+5x+20)*0.5==28 (6x+20)*0。5==28 6x==56—20 6x==36 x==6 所以磁悬浮列车的速度是50千米每小时,电动车列车速度是6千米每小时。 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方程 应用题 专题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文