新高考抽象函数试题的解法探讨和教学启示.pdf
《新高考抽象函数试题的解法探讨和教学启示.pdf》由会员分享,可在线阅读,更多相关《新高考抽象函数试题的解法探讨和教学启示.pdf(4页珍藏版)》请在咨信网上搜索。
1、2024 年第 2 期(上半月刊)中学数学研究9新高考抽象函数试题的解法探讨和教学启示广东省中山市华侨中学(528400)魏钰婷摘要 根据近三年新高考试卷中有关抽象函数的试题分析可以看出,抽象函数是考查函数性质、图象等内容的重要载体.学生可以利用赋值、特殊函数举例、抽象性质分析等方法突破重难点.试题考查了分析问题和解决问题的能力,也考查了数学抽象、逻辑推理和数学运算素养.试题关注基础性的同时更强调综合性和创新性,充分体现了高考评价体系对核心素养、关键能力和必备知识的要求.因此在这部分内容教学时,教师应当引导学生结合实例探究函数性质、针对易错辨析函数性质、抽象迭代归纳函数性质、借助图象理解函数性
2、质.关键词 抽象函数;新高考;函数性质抽象函数是高考中的热点,在近几年的新高考试卷中都能看到它的“身影”.抽象函数由于没有具体的函数解析式作为载体,理解和研究起来比较困难.解题时需要学生具备严谨的逻辑推理能力、丰富的想象力和灵活的知识运用能力.以下对近三年来新高考试卷中的三道抽象函数问题进行解法探讨,寻找突破这一重点难点的方法和规律.一、试题分析例 1(2023 年新高考 卷第 11 题)已知函数 f(x)的定义域为 R,f(xy)=y2f(x)+x2f(y),则().A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0 为 f(x)的极小值点解析思路一.利用赋值法对选项 A,B,C
3、 进行判断.令 x=y=0,则 f(0)=0,故 A 正确;令 x=y=1,则f(1)=f(1)+f(1),得 f(1)=0,故 B 正确;为了判断奇偶性,令 y=1,则 f(x)=f(x)+x2f(1),需要求出f(1),令x=y=1,则f(1)=f(1)+f(1)=2f(1),即 f(1)=0,从而 f(x)=f(x),又因为 f(x)的定义域为 R,所以 f(x)为偶函数,故 C 正确;接着利用特殊函数举反例排除 D 选项,显然函数 f(x)=0 符合题设条件,但此时f(x)无极值,故 D 错误;故本题正确答案为 A,B,C.思路二.对于 D 选项也可以举出另一些更加复杂的函数作为反例,
4、分析如下:当 x2y2=0 时,f(xy)=y2f(x)+x2f(y)两边同时除以 x2y2,得f(xy)x2y2=f(x)x2+f(y)y2.构造函数 g(x)=f(x)x,则 g(xy)=g(x)+g(y),显然y=lnx 满足该性质,但若要使得定义域为 R,可设g(x)=ln|x|,x=0,0,x=0,则 f(x)=x2ln|x|,x=0,0,x=0.当 x 0 时,f(x)=x2lnx,则 f(x)=x(2lnx+1).解(1)f(x)=lnx x+a,令 g(x)=lnx x+a,则g(x)=1x1=1 xx 0,得0 x 0,得 a 1,又 f(ea)=lnea ea+a=ea 1
5、),则(a)=2 ea 0,(a)在(1,+)上 递 减,故(a)(1)=2 e 1 时,f(x)有两个零点 x1,x2,故 a 的取值范围为(1,+).(2)由(1)分析不妨设 0 x1 1 x2,且 a=x1 lnx1=x2 lnx2,这里的 x1,x2为 a 的函数且x2 x1lnx2 lnx1=1,由对数平均不等式有:1=x2 x1lnx2 lnx1 2.设(a)=f(x1)=x1lnx112x21+(a 1)x1,则(a)=(lnx1 x1+a)x1+x1.因为f(x1)=lnx1x1+a=0,故(a)=x1,同理(a)=f(x2),则(a)=x2,设 h(a)=f(x1)+f(x2
6、)2a+3,则h(a)=x1+x2 2 0,即 h(a)在(1,+)上递增,从而h(a)h(1)=0.从上述问题看出,对于一些比较复杂的多变量的问题,我们不妨从隐函数的角度去思考求解有时会更容易(当然不是所有的极值点偏移问题采用这种方法都容易),这样可以加深对函数概念的理解,提高学生的思维水平.参考文献1 钟文体.从反函数观点看极值点偏移问题 J.中学数学教学,2022(06):18-20.10中学数学研究2024 年第 2 期(上半月刊)当 x (0,e12)时 f(x)0,a=1)(指数函数)f(x)=0,f(x)=1(常函数)f(xy)=f(x)+f(y)f(x)=logax(a 0,a
7、=1)(对数函数)f(x)=0(常函数)f(xy)=f(x)f(y)f(x)=xa(幂函数函数)f(x)=0,f(x)=1(常函数)f(x+y)=f(x)g(y)+f(y)g(x),g(x)=cosxf(x)=sinx(正弦函数)f(x)=0(常函数)(二)针对易错辨析函数性质理解函数的定义、熟练地进行运算是学习抽象函数的基础.学生在函数的学习中常常因为概念理解不清而出现错误,比如容易将函数 f(x+1)是奇函数错误地翻译成 f(x+1)=f(x+1),此时教师应提醒学生抓住函数“对应”的本质,设 g(x)=f(x+1),若 g(x)为奇函数,则 g(x)=g(x),也即 f(x+1)=f(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高 抽象 函数 试题 解法 探讨 教学 启示
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。