小学四年级奥数思维训练全集.doc
《小学四年级奥数思维训练全集.doc》由会员分享,可在线阅读,更多相关《小学四年级奥数思维训练全集.doc(27页珍藏版)》请在咨信网上搜索。
小学四年级奥数思维训练全集 27 专题一 找规律(一) 专题简介:一般以下几个方面来找规律: 1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数; 2.根据相隔的每两个数的关系,找出规律,推断出所要填的数; 3.要善于从整体上把握数据之间的联系,从而很快找出规律; 4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。 例1:找出下面数列的规律,并在括号里填上适当的数。1,4,7,10,( ),16,19 分析:相邻的两个数的差都是3,所以: 应填:10+3=13或16-3=13 像上面按照一定的顺序排列的一串数叫做。 试一试1:先找出下面数列的规律,再填空。 (1)33,28,23,( ),13,( ),3 (2)2,6,18,( ),162,( ) (3)128,64,32,( ),8,( ),2 例2:找出下列数排列的规律,再填空。 1,2,4,7,( ),16,22 分析:前4个数每相邻的两个数的差递增1,即依次是1、2、3……。 应填的数为:7+4=11或16-5=11 试一试2:先找出下面数列的规律,再填空。 (1)1,4,9,16,25,( ),49,64 (2)53,44,36,29,( ),18,( ),11,9,8 例3:先找出规律,然后在括号里填上适当的数。 23,4,20,6,17,8,( ),( ),11,12 分析:第1、3、5……个数递减3;第2、4、6……个数递增2。8后面的一个数为:17-3=14, 11前面的数为:8+2=10。 试一试3:先找出规律,然后在括号里填上适当的数。 (1)13,2,15,4,17,6,( ),( ) (2)4,28,6,26,9,23,( ),( ),18,14 例4:在数列1,1,2,3,5,8,13,( ),34,55……中,括号里应填什么数? 分析:从第三个数开始,每个数等于它前面两个数的和。括号里:8+13=21或34-13=21 上面这个数列叫做斐波那切(意大利古代著名数学家)数列,也叫做“兔子数列”。 试一试4:先找出规律,然后在括号里填上适当的数。 (1)2,2,4,6,10,16,( ),( ) (2)34,21,13,8,5,( ),2,( ) (3)1,3,6,8,16,18,( ),( ),76,78 例5:下面每个括号里的两个数都是按一定的规律组合的,在□里填上适当的数。 (8,4) (5,7) (10,2) (□,9) 分析:每个括号里的两个数的和都是12。 □应为:12-9=3 试一试5:下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。 (1)(1,24)(2,12)(3,8)(4,□) (2)(18,17)(14,10)(10,1)(□,5) (3)(2,3)(5,7)(7,10)(10,□) 专题二 找 规 律(二) 专题简析:对于较复杂的按规律填数的问题,从以下几个方面来思考: 1,对于几列数组成的一组数变化规律,没有一成不变的方法,一种方法不行,就要及时调整思路,换一种方法再分析; 2,分布在图中的数,变化规律与数在图形中的特殊位置有关,是解题的突破口。 例1:根据下表中的排列规律,在空格里填上适当的数。 分析:经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。 试一试1:找规律,在空格里填上适当的数。 例2:根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数? 分析:前面两个圈中三个数之间有这样的关系:5×12÷10=6 4×20÷10=8 第三个圈中右下角应填:8×30÷10=24 试一试2:根据前面图形中数之间的关系,想一想第三个图形的空格里应填什么数。 例3:根据第1个算式直接写出后几个算式的结果。 12345679×9=111111111 12345679×18= 12345679×54= 12345679×81= 分析:几个算式第1个因数相同。第二个因数成倍数关系:18=9×2 54=9×6 81=9×9 所以: 12345679×18=12345679×9×2=222222222 12345679×54=12345679×9×6=666666666 12345679×81=12345679×9×9=999999999 试一试3:找规律,写得数。 1×1=1 11×11=121 111×111= 111111111×111111111= 专题三 简单推理 专题简析:解答推理问题,要从许多条件中找出关键条件作为推理的突破口。推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。 例1:根据下面两个算式,求○与△各代表多少? △-○=2 ① ○+○+△+△+△=56 ② 分析:由①可知,△=○+2;将②中的○都换成△,那么5个△=56+2×2,△=12,再由①可知,○=12-2=10 试一试1:根据下面两个算式求□与○各代表多少? □-○=8 □+□+○+○=20 例2:甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们分别获得跳高、跳远和垒球冠军。已知:二小的是跳远冠军;一小的不是垒球冠军,甲不是跳高冠军;乙既不是二小的也不是跳高冠军。问:他们三个人分别是哪个学校的?获得哪项冠军? 分析:由“二小的是跳远冠军”可知垒球、跳高冠军是一小或三小的;因为“一小的不是垒球冠军”,所以一小一定是跳高冠军,三小的是垒球冠军;由“甲不是跳远冠军”,“乙既不是二小的也不是跳高冠军”可知,一小的甲是跳高冠军,二小的丙是跳远冠军,三小的乙是垒球冠军。 试一试2:有三个女孩穿着崭新的连衣裙去参加游园会。一个穿花的,一个穿白的,一个穿红的。但不知哪一个姓王、哪一个姓李、哪一个姓刘。只知道姓刘的不喜欢穿红的,姓王的既不是穿红裙子,也不是穿花裙子。你能猜出这三个女孩各姓什么吗? 专题四 应用题(一) 专题简析:解答应用题时,通过对条件进行比较、转化、重新组合等多种手段,找到解题的突破口,从而使问题得以顺利解决。 例1:某玩具厂把630件玩具分别装在5个塑料箱和6个纸箱里,1个塑料箱与3个纸箱装的玩具同样多。每个塑料箱和纸箱各装多少件玩具? 分析:如果玩具全部装在塑料箱或全部装在纸箱里,那么可以求出一个纸箱或一个塑料箱装多少件。因为3个纸箱与一个塑料箱装的同样多,所以6个纸箱与2个塑料箱装的同样多。这样,5个塑料箱装的玩具件数和7个塑料箱装的就同样多。可求出一个塑料箱装多少件。 试一试1:王叔叔买了3千克荔枝和4千克桂圆,共付款156元。已知5千克荔枝的价钱等于2千克桂圆的价钱。每千克荔枝和每千克桂圆各多少元? 例2:一个木器厂要生产一批课桌。原计划每天生产60张,实际每天比原计划多生产4张,结果提前一天完成任务。原计划要生产多少张课桌? 分析:“提前1天完成任务”,这一天的60张要平均分到前面的几天去做。实际比原计划每天多生产4张,所以实际生产的天数是60÷4=15天,原计划生产的天数是15+1=16天。所以原计划要生产60×16=960张。 试一试2:小明看一本故事书,计划每天看12页,实际每天多看8页,结果提前2天看完。这本故事书有多少页? 专题五 算式谜(一) 专题简析:解答算式谜问题时,要先仔细审题,分析数据之间的关系,找到突破口,逐步试验,分析求解,通常要运用倒推法、凑整法、估值法等。 例1:将0、1、2、3、4、5、6这七个数字填在圆圈和方格内,每个数字恰好出现一次,组成一个整数算式。 ○×○=□=○÷○ 分析:用七个数字组成五个数(3个是一位数,2是两位数)。而方格中的数和被除数是两位数,其他是一位数。 0和1不能作因数,也不能做除数。由于2×6=12(2将出现两次),2×5=10(不合题意),2×4=8(数字中没有8),2×3=6(不是两位数)。因此,0、1、2只能用来组成两位数。经试验可得:3×4=12=60÷5 试一试1:将0、1、3、5、6、8、9这七个数字填在圆圈和方筐里,每个数字恰好出现一次组成一个整数算式。 ○×○=□=○÷○ 例2:把“+、-、×、÷”分别放在适当的圆圈中(运算符号只能用一次),并在方框中填上适当的数,使下面的两个等式成立。 36○0○15=15 21○3○5=□ 分析:先从第一个等式入手,等式右边是15,与等式左边最后一个数15相同,因为0+15=15,所以,只要使36与0的运算结果为0就行。显然,36×0+15=15 因为“×”、“+”已用,第二个等式中只有“-”、“÷”可以填。“方框中填整数”,而3不能被5整除:21÷3-5=2 试一试2:将1 ~ 9这九个数字填入□中(每个数字只能用一次),组成三个等式。 □+□=□ □-□=□ □×□=□ 专题六 算式谜(二) :专题简析:1.利用列举和筛选相结合的方法,逐步排除不合理的数字; 2.算式谜解出后,要验算一遍。 例1:在下面的方框中填上合适的数字。 分析:由积的末尾是0,推出第二个因数的个位是5;由第二个因数的个位是5,并结合第一个因数与5相乘的积的情况考虑,可推出第一人个因数的百位是3;由第一个因数为376与积为31□□0,可推出第二个因数的十数上是8。题中别的数字就容易填了。 试一试1:在□里填上适当的数。 例2:在下面方框中填上适合的数字。 分析:由“1□2”和“1□”可知商和除数的十位都是1。那么被除数的十位只可能是7、8、9。如果是7,除数的个位是0,那么最后必有余数;如果被除数是8,除数的个位就是1,也不能除尽;只有当被除数的十位是9时,除数的个位是2时,商的个位为6,正好除尽。 完整的竖式是: 试一试2:在□内填入适当的数字,使右面除法竖式成立。 例3:下面算式中的a、b、c、d这四个字母各代表什么数字? 分析:因为四位数abcd乘9的积是四位数,可知a=1、d=9;因为9与b相乘的积不能进位,所以b只能是0(1已经用过);再由b=0,可推知c=8。 试一试3:右式中每个汉字所代表的数字。 华= 罗= 庚= 金= 杯= 例4:在1、2、3、4、5、6、7、8、9这九个数字中间加上“+、-”两种运算符号,使其结果等于100(数字的顺序不能改变)。 分析:先凑出与100比较接近的数,再根据需要把相邻的几个数组成一个数。 (1)123与100比较接近,前三个数字组成123,后面的数字凑出23就行。因为45与67相差22,8与9相差1,所以:123+45-67+8-9=100 (2)89与100比较接近,78与67正好相差11,所此可得另一种解法:123+45-67+89=100 试一试4:一个乘号和七个加号添在下面的算式中合适的地方,使其结果等于100(数字的顺序不能改变)。 1 2 3 4 5 6 7 8 9 = 100 专题七 巧妙求和(一) 专题简析:若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。 相邻两项的差都相等的数列称为等差数列,后项与前项的差称为公差。 通项公式:第n项=首项+(项数-1)×公差 项数公式:项数=(末项-首项)÷公差+1 例1:有一个数列:4,10,16,22,…,52,这个数列共有多少项? 分析:容易看出这是一个等差数列,公差为6,首项是4,末项是52,要求项数,可直接带入项数公式进行计算。 项数=(52-4)÷6+1=9 答:这个数列共有9项。 试一试1:有一个等差数列:2,5,8,11,…,101,这个等差数列共有多少项? 例2:有一等差数列:3,7,11,15,……,这个等差数列的第100项是多少? 分析:这个等差数列的首项是3,公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。 第100项=3+4×(100-1)=399 试一试2:求1,4,7,10……这个等差数列的第30项。 例3:有这样一个数列:1,2,3,4,…,99,100。请求出这个数列所有项的和。 分析:等差数列总和=(首项+末项)×项数÷2 1+2+3+…+99+100=(1+100)×100÷2=5050 试一试3:6+7+8+…+74+75 例4:求等差数列2,4,6,…,48,50的和。 分析:项数=(末项-首项)÷公差+1 =(50-2)÷2+1=25 首项=2,末项=50,项数=25 等差数列的和=(2+50)×25÷2=650 试一试4:9+18+27+36+…+261+270 专题八 最优化问题 专题简析:做一件事情,合理安排用的时间最少,效果最佳,这类问题称为统筹问题。“费用最省”、“面积最大”、“损耗最小”等等问题,这些问题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值问题。以上的问题实际上都是“最优化问题”。 例题1 贴烧饼的时候,第一面需要烘3分钟,第二面需要烘2分钟,而贴烧饼的架子上一次最多只能放2个烧饼。要贴3个烧饼至少需要几分钟? 思路:锅中保持两张饼用时最少。 (1)1号饼正面、2号饼正面————3分钟 (2)1号饼反面、3号饼正面————2分钟 (3)2号饼反面、3号饼正面————1分钟 (4)2号饼反面、3号饼反面————1分钟 (5)3号饼反面————1分钟。 3+2+1+1+1=8分钟 试一试1 红太狼用一个平底锅烙饼,锅上只能同时放两个饼。烙第一面需要2分钟,烙第二面需要1分钟。现在在烙三个饼,最少需要多少分钟? 例题2 在一条公路上每隔50千米有一个粮库,共4个粮库。甲粮库存有10吨粮食,乙粮库存有20吨粮食,丁粮库存有50吨粮食,还有一个粮库是空的。现在想把所存的粮食集中放在一个粮库中,如果每吨粮食运1千米要1元的运费,那么最少要花多少运费才行? 思路:移动的货物重量小路程近,花费的费用就少。在本题中,各粮库之间的距离相等都是50千米,一般原则是“少往多处靠”。甲、乙两仓库粮食合起来是30吨,还不如丁粮库的粮食多,所以应将甲、乙粮库的粮食集中放在丁粮库。甲粮库需用1×10×50×3=1500元,乙粮库需要1×20×50×20=2000元,共用1500+2000=3500元。 试一试2:一条公路有四个储油站,它们之间都相隔100千米。甲储油站有50吨油,乙储油站储有10吨油,丙储油站有20吨油,丁储油站是空的。现在如果想把所存的油集中于一个储油站,每吨油运1千米要2元运费,那么最少要花多少运费? 例3:五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使三位同学留在卫生室的时间总和最短? 分析:校医应该给治疗时间最短的先治病,治疗时间长的最后治疗,才能使三位同学在卫生室的时间总和最短。李佳治病3人等:1×3=3分钟;孙勇治病2人等:3×2=6分钟;,赵明治病自己1人等:5×1=5分钟。时间总和是1×3+3×2+5×1=14分钟。 :试一试3:甲、乙、丙、丁四人同时到一水龙头处用水,甲洗托把需要3分钟,乙洗抹布需要2分钟,丙洗衣服需要10分钟,丁用桶注水需要1分钟。怎样安排四人用水的次序,使他们所花的总时间最少?最少时间是多少? 例4:用18厘米长的铁丝围成各种长方形,要求长和宽的长度都是整厘米数。围成的长方形的面积最大是多少? 分析:根据“长方形周长=(长+宽)×2”,得到长+宽=18÷2=9cm。根据“两数和一定,差越小积越大”,又已知长和宽的长度都是整厘米数,因此,当长是5cm,宽是4cm时,围成的长方形的面积最大:5×4=20平方厘米。 试一试4:一个长方形的周长是20分米,它的面积最大是多少? 例5:用3 ~ 6这四个数字分别组成两个两位数,使这两个两位数的乘积最大。 分析:考虑两点:(1)把大数放在高位;即应把6和5这两个数字放在十位。(2)“两个因数的差越小,积越大”的规律,3应放在6的后面,4应放在5的后面。63×54=3402 试一试5:用5 ~ 8这四个数字分别组成两个两位数,使这两个两位数的乘积最大。 专题九 规律(一) 专题简析:在进行加、减、乘、除四则运算是时一个数不变,另一个数发生改变,结果也会发生相应变化,抓住变化规律解题,会让我们的计算更轻松。 例1:两个数相加,一个加数增加9,另一个加数减少9,和是否发生变化? 分析:一个加数增加9,假如另一个加数不变,和就增加9;一个加数不变,另一个加数减少9,和就减少9。相当于和先增加9,又减少9,所以和不发生变化。 试一试1:两个数相加,一个数减6,另一个数减2,和起什么变化? 例2:两个数相加,如果一个加数增加10,要使和增加6,那么另一个加数应有什么变化? 分析:一个加数增加10,和就增加10。现在“要使和增加6”,另一个加数应减少10-6=4。 试一试2:两个数相加,如果一个加数增加8,要使和减少15,另一个加数应有什么变化? 例3:两数相减,如果被减数增加8,减数也增加8,差是否起变化? 分析:被减数增加8,差就增加8;减数增加8,差就减少8。差先增加8,接着又减少8,所以不发生变化。 试一试3:两数相减,被减数增加12,减数减少12,差起什么变化? 例4:两数相乘,如果一个因数扩大8倍,另一个因数缩小2倍,积将有什么变化? 分析:一个因数扩大8倍,积将扩大8倍;另一个因数缩小2倍,积将缩小2倍。积先扩大8倍又缩小2倍,因此,积扩大:8÷2=4倍。 试一试4:两数相乘,如果一个因数扩大3倍,另一个因数缩小12倍,积将有什么变化? 例5:两数相除,如果被除数扩大4倍,除数缩小2倍,商将怎样变化? 分析:被除数扩大4倍,商就扩大4倍;除数缩小2倍,商就扩大2倍。商先扩大4倍,接着又扩大2倍,商将扩大4×2=8倍。 试一试5:两数相除,被除数缩小12倍,除数缩小2倍,商将怎样变化? 专题十 变化规律(二) 专题简析:前面,我们学习了和、差、积、商的变化规律。现在,我们利用这些规律来解决一些较简单的问题。 例1:两数相减,被减数减少8,要使差减少12,减数应有什么变化? 分析:被减数减少8,假如减数不变,差也减少8;现在要使差减少12,减数应增加12-8=4。 试一试1:两数相减,如果被减数增加6,要使差增加15,减数应有什么变化? 例2:两个数相除,商是8,余数是20,如果被除数和除数同时扩大10倍,商是多少?余数是多少? 分析:两数相除,被除数和除数同时扩大相同的倍数,商不变,余数扩大相同的倍数。所以商是8,余数是20×10=200。 试一试2:两个数相除,商是8,余数是600。如果被除数和除数同时缩小100倍,商是多少?余数是多少? 例3:两数相乘,积是48。如果一个因数扩大2倍,另一个因数缩小3倍,那么积是多少? 分析:一个因数扩大2倍,积扩大2倍;另一个因数缩小3倍,积缩小3倍。所以最后的积是48×2÷3=32。 试一试3:两数相除,商是19。如果被除数扩大20倍,除数缩小4倍,那么商是多少? 专题十一 错中求解 专题简析:在加、减、乘、除式的计算中,如果粗心大意将算式中的一些运算数或符号抄错,就会导致计算结果发生错误。现在我们就来讨论怎样利用错误的答案求出正确的结论。 例1:小玲在计算除法时,把除数65写成56,结果得到的商是13,还余52。正确的商是多少? 分析:要求出正确的商,必须先求出被除数是多少。先抓住错误的得数,求出被除数:13×56+52=780。所以,正确的商是:780÷65=12。 试一试1:小虎在计算除法时,把被除数1250写成1205,结果得到的商是48,余数是5。正确的商应该是多少? 例2:小芳在计算除法时,把除数32错写成320,结果得到商是48。正确的商应该是多少? 分析:根据题意,把除数32改成320扩大到原来的10倍,又因为被除数不变,根据商的变化规律,正确的商应该是错误商的10倍。所以正确的商应该是48×10=480。 试一试2:小马在计算除法时,把被除数1280误写成12800,得到的商是32。正确的商应该是多少? 例3:小冬在计算有余数的除法时,把被除数137错写成173,这样商比原来多了3,而余数正好相同。正确的商和余数是多少? 分析:因为被除数137被错写成了173,被除数比原来多了173-137=36,又因为商比原来多了3,而且余数相同,所以除数是36÷3=12。又由137÷12=11……5,所以余数是5。 试一试3:刘强在计算有余数的除法时,把被除数137错写成174,结果商比原来多3,余数比原来多1。求这道除法算式的除数和余数。 例4:小龙在做两位数乘两位数的题时,把一个因数的个位数字4错当作1,乘得的结果是525,实际应为600。这两个两位数各是多少? 分析:一个因数的个位4错当作1,所得的结果比原来少了(4-1)个另一个因数;实际的结果与错误的结果相差600-525=75, 另一个因数=75÷3=25 一个因数=600÷25=24 试一试4:小菊做两位数乘两位数的乘法时,把一个因数的个位数字1误写成7,结果得646,实际应为418。这两个两位数各是多少? 例5:方方和圆圆做一道乘法式题,方方误将一个因数增加14,计算的积增加了84,圆圆误将另一个因数增加14,积增加了168。那么,正确的积应是多少? 分析:由“一个因数增加14,计算结果增加了84”可知另一个因数是84÷14=6;又由“另一个因数增加14,积增加了168”可知,这个因数是168÷14=12。所以正确的积应是12×6=72。 试一试5:两个数相乘,如果一个因数增加3,另一个因数不变,那么积增加18;如果一个因数不变,另一个因数减少4,那么积减少200。原来的积是多少? 专题十二 简单列举 专题简析:直接列式解答比较困难时,可采用一一列举的方法解决。(根据题目的要求,通过一一列举各种情况最终达到解答整个问题的方法叫做列举法。) 例题1 从南通到上海有两条路可走,从上海到南京有3条路可走。王叔叔从南通经过上海到南京去,有几种走法? 分析:为了帮助理解,先画一个线路示意图。 从南通到上海有两条路,每条路经上海到南京都有3条路;即有2个3条路:3×2=6(种) 试一试1:从甲地到乙地,有两条直达铁路,从乙地到丙地,有4条直达公路。那么,从甲地到丙地有多少种不同的走法? 例2:有三张数字卡片,分别为3、6、0。从中挑出两张排成一个两位数,一共可以排成多少个两位数? 分析:排成时要注意“0”不能排在最高位。 十位上排6,个位有两种选择:60,63; 十位上排3,个位有两种选择:30,60。 一共可以排成2×2=4(个)两位数。 试一试2:用8、6、3、0这四个数字,可以组成多少个不同的三位数?最大的一个是多少? 例3:用红、黄、蓝三种信号灯组成一种信号,可以组成多少种不同的信号? 分析: 要使信号不同,每一种信号颜色的顺序就不同。把这些不同的信号一一列举如下: 红灯排在第一位置时,有两种不同的信号, 黄灯排在第一位置时,有两种不同的信号, 蓝灯排在第一位置时,有两种不同的信号。 因此,共有2×3=6种不同的排法。 试一试3:小红有3种不同颜色的上衣,4种不同颜色的裙子,问她共有多少种不同的穿法? 例4:在一次足球比赛中,4个队进行循环赛,需要比赛多少场?(两个队之间比赛一次称为1场) 分析1:4个队进行循环赛,即每两个队都要赛一场。设4个队分别为A、B、C、D则: A队和其他3个队各比赛1次,要赛3场; B队和其他两个队还要各比赛1次,要赛2场; C队还要和D队比赛1次,要赛1场。 这样,一共需要比赛3+2+1=6(场)。 分析2:4个队进行循环赛,即每两个队都要赛一场。则每个队都要赛3场,共赛4×3=12场。这样就重复算了两次,因此实际共赛:12÷2=6(场) 试一试4:在一次羽毛球赛中,8个队进行循环赛,需要比赛多少场? 专题十三 和倍问题 专题简析:已知两个数的和与它们之间的倍数关系,求这两个数是多少的应用题,叫做和倍问题。解答和倍应用题的基本数量关系是: 和÷(倍数+1)=小数 小数×倍数=大数 (和-小数=大数) 例1:学校有科技书和故事书共480本,科技书的本数是故事书的3倍。两种书各多少本? 分析:为了便于理解题意,我们画图来分析 把故事书的本数看作一份,科技书的本数就是这样的3份,两种书的总本数就是1+3=4份。把480本书平均分成4份,1份是故事书的本数,3份是科技书的本数。 故事书:480÷(1+3)=120(本) 科技书:120×3=360(本) 试一试1:一块长方形黑板的周长是96分米,长是宽的3倍。这块长方形黑板的长和宽各是多少分米? 例2:果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。求梨树、桃树和苹果树各有多少棵? 分析:如果把苹果树的棵数看作1份,三种树的总棵数是这样的1+3+4=8份。所以, 苹果树:1200÷8=150(棵) 梨树:150×3=450(棵) 桃树:150×4=600(棵) 试一试2:李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍。鸡、鸭、鹅各养了多少只? 例3:有三个书橱共放了330本书,第二个书橱里的书是第一个的2倍,第三个书橱里的书是第二个的4倍。每个书橱里各放了多少本书? 分析:把第一个书橱里的本数看作1份,第二个书橱里的本数是这样的2份,第三个就是这样的2×4=8份,三个书橱里的总本数就是这样的1+2+8=11份。所以, 第一个书橱:330÷11=30(本) 第二个书橱:30×2=60(本) 第三个书橱:60×4=240(本) 试一试3:甲、乙、丙三个修路队共修路1200米,甲队修的米数是乙队的2倍,乙队修的数数是丙队的3倍。三个队各修了多少米? 例4:少先队员种柳树和杨树共216棵,杨树的棵数比柳树的3倍多20棵,两种树各种了多少棵? 分析:如果杨树少种20棵,杨树的棵数恰好是柳树的3倍。柳树1份和杨树3份的总棵数是216-20=196(棵), 柳树棵数:196÷(1+3)=49(棵) 杨树棵数:216-49=167(棵) 试一试4:小华和小明两人参加数学竞赛,两人共得168分,小华的得分比小明的2倍少42分。两人各得多少分? 例5:三个筑路队共筑路1360米,甲队筑的米数是乙队的2倍,乙队比丙队多240米。三个队各筑多少米? 分析:把乙队的米数看作1份,甲队筑的米数是这样的2份。假设丙队多筑240米,那么三个队共筑了1360+240=1600米,正好是乙队的2+1+1=4倍。所以,乙队筑了1600÷4=400米,甲队筑了400×2=800米,丙队筑了400-240=160米。 试一试5:三个植树队共植树1900棵,甲队植树的棵数是乙队的2倍,乙队比丙队少植300棵。三个队各植树多少棵? 第十四周 植树问题 专题简析: 1.线段上的植树问题可以分为以下三种情形: (1)两端都要植树:棵数=段数+1; (2)一端植树:棵数=段数; (3)两端都不植树:棵数=段数-1。 2.在封闭的路线上植数:棵数=段数。 例1:城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。这条路长多少米? 分析: 28棵树之间有28-1=27段,每隔6米为一段,所以这条大路长6×27=162米。 试一试1:一条路长200米,在路的一旁从头至尾每隔5米植一棵树,一共要植多少棵? 例2:在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽多少棵树? 分析:游泳池是封闭线路,植树的棵数和段数相等。240÷5=48(棵) 试一试2:在圆形的水池边,每隔3米种一棵树,共种树60棵,这个水池的周长是多少米? 例3:在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。求相邻两盏彩灯之间的距离。 分析:大桥两边一共挂了202盏彩灯,每边各挂202÷2=101盏,101盏彩灯把800米长的大桥分成101-1=100段,所以,相邻两盏彩灯之间的距离是800÷100=8米。 试一试3:六年级学生参加广播操比赛,排了5路纵队,队伍长20米,前后两排相距1米。六年级有学生多少人? 例4:一个木工锯一根19米的木料,他先把一头损坏部分锯下来1米,然后锯了5次,锯成同样长的短木条。每根短木条长多少米? 分析:把长19-1=18米的木条锯了5次,以锯成5+1=6段,每根短木条长18÷6=3米。 试一试4:有一个工人把长12米的圆钢锯成了3米长的小段,锯断一次要5分钟。共需要多少分钟? 例5:有一幢10层的大楼,由于停电电梯停开。某人从1层走到3层需要30秒,照这样计算,他从3层走到10需要多少秒? 分析:1层至3层有两个间隔,所以每个间隔用去的时间是30÷(3-1)=15秒,3层到10层经过了10-3=7个时间间隔,所以,他从3层到10层需要15×7=105秒。 试一试5:时钟4点敲4下,6秒钟敲完。那么12点钟敲12下,多少秒钟敲完? 第十五周 图形问题 专题简析:解答“图形面积”问题时,应注意以下几点: 1、根据题意,画出图形。 2、合理地进行切拼。 3、掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。 例1:人民路小学操场长90米,宽45米。改造后,长增加10米,宽增加5米。现在操场面积比原来增加了多少平方米? 分析:用操场现在的面积减去操场原来的面积,就得到增加的面积。 现在面积:(90+10)×(45+5)=5000平方米 原来面积:90×45=4050平方米 现在比原来增加:5000-4050=950平方米 试一试1:一块长方形铁板,长18分米,宽13分米。如果长和宽各减少2分米,面积比原来减少多少平方分米? 例2:一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。这个长方形原来的面积是多少平方米? 分析:由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。所以,这个长方形原来的面积是12×9=108平方米。 试一试2:一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。这个长方形原来的面积是多少平方米? 例3:一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场(如下图),求养鸡场的占地面积。 分析:因为一面利用着墙,所以两条长加一条宽等于16米。而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。 试一试3:下图是某个养禽专业户用一段长13米的篱笆围成的一个长方形养鸡场,求养鸡场的占地面积。 例4:街心花园中一个正方形的花坛四周有1米宽的水泥路,如果水泥路的总面积是12平方米,中间花坛的面积是多少平方米? 分析:把水泥路分成四个同样大小的长方形(如下图)。因此,一个长方形的面积是12÷4=3平方米。因为水泥路宽1米,所以小长方形的长是3÷1=3米。从图中可以看出正方形小正方形的边长是3-1=2米。中间花坛的面积是2×2=4平方米。 试一试4:有一个正方形的水池,如下图的阴影部分,在它的周围修一个宽8米的花池,花池的面积是480平方米,求水池的边长。 第十六周 巧妙求和(二) 专题简析: 某些问题,可以转化为求若干个数的和。先判断是否是求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。 例1:刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都比前一天多3页,第11天读了60页,正好读完。这本书共有多少页? 分析:根据“每天读的页数都比前一天多3页”可知他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。这列数是一个等差数列,首项=30,末项=60,项数=11带入等差数列求和公式,得: (30+60)×11÷2=495(页) 试一试1:丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词? 例2:30把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次? 分析:开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试29+28+27+…+2+1=(29+1)×29÷2=435(次)。 试一试2:有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等? 例3:某班有51个同学,毕业时每人都和其他的每个人握一次手。那么共握了多少次手? 分析1:假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为: 50+49+48+…+2+1=(50+1)×50÷2=1275(次) 分析2:每个同学都要握手51-1=50次。而每两人就重复算了1次。所以实际握手次数:51×50÷2=1275(次) 试一试3:学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。如果有21人参加比赛,一共要进行多少场比赛? 专题十七 数数图形 专题简析:当线段、角、三角形、长方形等图形重重叠叠地交错在一起时就构成了复杂的几何图形。要想准确地计数这类图形中所包含的某一种基本图形的个数,必须注意以下几点: 1,弄清被数图形的特征和变化规律。 2,要按一定的顺序数,做到不重复,不遗漏。 例1:数一数下图中共有多少个三角形。- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 四年级 思维 训练 全集
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文