2018年黑龙江省牡丹江市中考数学试卷(含答案).doc
《2018年黑龙江省牡丹江市中考数学试卷(含答案).doc》由会员分享,可在线阅读,更多相关《2018年黑龙江省牡丹江市中考数学试卷(含答案).doc(17页珍藏版)》请在咨信网上搜索。
黑龙江省牡丹江市2018年中考数学试卷 一、选择题<每小题3分,满分27分) 1.<3分)<2018•牡丹江)下列图形中,既是轴对称图形,又是中心对称图形的是< ) A. B. C. D. 考点: 中心对称图形;轴对称图形. 分析: 根据轴对称图形与中心对称图形的概念求解. 解答: 解:A、是轴对称图形,不是中心对称图形.故此选项错误; B、是中心对称图形,不是轴对称图形.故此选项错误; C、既是轴对称图形,不是中心对称图形.故此选项正确; D、不是轴对称图形,是中心对称图形.故此选项错误. 故答案选:C. 点评: 本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.<3分)<2018•牡丹江)在函数y=中,自变量x的取值范围是< ) A. x≥0 B. x>0 C. x≠0 D. x>0且x≠1 考点: 函数自变量的取值范围. 分析: 分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分. 解答: 解:根据题意得到:x>0, 故选B. 点评: 本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆. 3.<3分)<2018•牡丹江)下列计算正确的是< ) A. 2a2+a=3a2 B. 2a﹣1=<a≠0) C. <﹣a2)3÷a4=﹣a D. 2a2•3a3=6a5 考点: 同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式;负整数指数幂. 分析: 根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案. 解答: 解:A、2a2+a,不是同类项不能合并,故A选项错误; B、2a﹣1=<a≠0),故B选项错误; C、<﹣a2)3÷a4=﹣a2,故C选项错误; D、2a2•3a3=6a5,故D选项正确. 故选:D. 点评: 此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题关键是熟记法则. 4.<3分)<2018•牡丹江)由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是< )b5E2RGbCAP A. 3 B. 4 C. 5 D. 6 考点: 由三视图判断几何体. 分析: 根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体. 解答: 解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体, 第二层最少有1个小正方体, 因此组成这个几何体的小正方体最少有3+1=4个. 故选B. 点评: 本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案. 5.<3分)<2018•牡丹江)将抛物线y=<x﹣1)2+3向左平移1个单位,得到的抛物线与y轴的交点坐标是< )p1EanqFDPw A. <0,2) B. <0,3) C. <0,4) D. <0,7) 考点: 二次函数图象与几何变换. 专题: 几何变换. 分析: 先根据顶点式确定抛物线y=<x﹣1)2+3的顶点坐标为<1,3),在利用点的平移得到平移后抛物线的顶点坐标为<0,3),于是得到移后抛物线解读式为y=x2+3,然后求平移后的抛物线与y轴的交点坐标. 解答: 解:抛物线y=<x﹣1)2+3的顶点坐标为<1,3),把点<1,3)向左平移1个单位得到点的坐标为<0,3),所以平移后抛物线解读式为y=x2+3,所以得到的抛物线与y轴的交点坐标为<0,3). 故选B. 点评: 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解读式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解读式;二是只考虑平移后的顶点坐标,即可求出解读式. 6.<3分)<2018•牡丹江)若x:y=1:3,2y=3z,则的值是< ) A. ﹣5 B. ﹣ C. D. 5 考点: 比例的性质. 分析: 根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解. 解答: 解:∵x:y=1:3, ∴设x=k,y=3k, ∵2y=3z, ∴z=2k, ∴==﹣5. 故选A. 点评: 本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便. 7.<3分)<2018•牡丹江)如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是< )DXDiTa9E3d A. 30° B. 45° C. 60° D. 75° 考点: 圆周角定理;含30度角的直角三角形. 分析: 由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值. 解答: 解:∵⊙O的直径是AB, ∴∠ACB=90°, 又∵AB=2,弦AC=1, ∴sinB=, ∴∠B=30°, ∴∠A=∠D=60°, 故选:C. 点评: 本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值. 8.<3分)<2018•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是< )RTCrpUDGiT A. B. C. D. 考点: 动点问题的函数图象. 分析: 根据∠A的度数求出菱形的高,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可. 解答: 解:∵∠A=60°,AB=4, ∴菱形的高=4×=2, 点P在AB上时,△APD的面积S=×4×t=t<0≤t≤4); 点P在BC上时,△APD的面积S=×4×2=4<4<t≤8); 点P在CD上时,△APD的面积S=×4×<12﹣t)=﹣t+12<8<t≤12), 纵观各选项,只有B选项图形符合. 故选B. 点评: 本题考查了动点问题函数图象,菱形的性质,根据点P的位置的不同,分三段求出相应的函数解读式是解题的关键. 9.<3分)<2018•牡丹江)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:5PCzVD7HxA ①FB⊥OC,OM=CM; ②△EOB≌△CMB; ③四边形EBFD是菱形; ④MB:OE=3:2. 其中正确结论的个数是< ) A. 1 B. 2 C. 3 D. 4 考点: 菱形的判定与性质;全等三角形的判定与性质;矩形的性质. 分析: ①根据已知得出△OBF≌△CBF,可求得△OBF与△CBF关于直线BF对称,进而求得FB⊥OC,OM=CM; ②因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM. ③先证得∠ABO=∠OBF=30°,再证得OE=OF,进而证得OB⊥EF,因为BD、EF互相平分,即可证得四边形EBFD是菱形; ④根据三角函数求得MB=OM/,OF=OM/,即可求得MB:OE=3:2. 解答: 解:连接BD, ∵四边形ABCD是矩形, ∴AC=BD,AC、BD互相平分, ∵O为AC中点, ∴BD也过O点, ∴OB=OC, ∵∠COB=60°,OB=OC, ∴△OBC是等边三角形, ∴OB=BC=OC,∠OBC=60°, 在△OBF与△CBF中 ∴△OBF≌△CBF<SSS), ∴△OBF与△CBF关于直线BF对称, ∴FB⊥OC,OM=CM; ∴①正确, ∵∠OBC=60°, ∴∠ABO=30°, ∵△OBF≌△CBF, ∴∠OBM=∠CBM=30°, ∴∠ABO=∠OBF, ∵AB∥CD, ∴∠OCF=∠OAE, ∵OA=OC, 易证△AOE≌△COF, ∴OE=OF, ∴OB⊥EF, ∴四边形EBFD是菱形, ∴③正确, ∴△EOB≌△FOB≌△FCB, ∴△EOB≌△CMB错误. ∵∠OMB=∠BOF=90°,∠OBF=30°, ∴MB=OM/,OF=OM/, ∵OE=OM, ∴MB:OE=3:2,正确; 故选C. 点评: 本题考查了矩形的性质,菱形的判定和性质,全等三角形的判定和性质,等边三角形的判定和性质以及三角函数等的知识. 二、填空题<每小题3分,满分33分) 10.<3分)<2018•牡丹江)2018年我国农村义务教育保障资金约为87900000000元,请将数87900000000用科学记数法表示为 8.79×1010.jLBHrnAILg 考点: 科学记数法—表示较大的数. 分析: 科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于87900000000有11位,所以可以确定n=11﹣1=10. 解答: 解:87 900 000 000=8.79×1010. 故答案为:8.79×1010. 点评: 此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键. 11.<3分)<2018•牡丹江)如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件 AB=DE<答案不唯一) ,使△ABC≌△DEF.xHAQX74J0X 考点: 全等三角形的判定. 专题: 开放型. 分析: 可选择利用AAS或SAS进行全等的判定,答案不唯一,写出一个符合条件的即可. 解答: 解:添加AB=DE. ∵BE=CF, ∴BC=EF, ∵AB∥DE, ∴∠B=∠DEF, ∵在△ABC和△DEF中, , ∴△ABC≌△DEF<SAS). 故答案可为:AB=DE<答案不唯一). 点评: 本题考查了全等三角形的判定,解答本题的关键是熟练掌握全等三角形的几种判定定理. 12.<3分)<2018•牡丹江)某种商品每件的标价为240元,按标价的八折销售时,每件仍能获利20%,则这种商品每件的进价为 160 元.LDAYtRyKfE 考点: 一元一次方程的应用. 分析: 设这种商品每件的进价为x元,根据按标价的八折销售时,仍可获利10%,列方程求解. 解答: 解:设这种商品每件的进价为x元, 由题意得,240×0.8﹣x=10%x, 解得:x=160, 即每件商品的进价为160元. 故答案是:160. 点评: 本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解. 13.<3分)<2018•牡丹江)一组数据2,3,x,y,12中,唯一的众数是12,平均数是6,这组数据的中位数是 3 .Zzz6ZB2Ltk 考点: 中位数;算术平均数;众数. 分析: 先根据数据2,3,x,y,12的平均数是6,求出x+y=13,再根据数据2,3,x,y,12中,唯一的众数是12,求出x,y的值,最后把这组数据从小到大排列,即可得出答案. 解答: 解:∵数据2,3,x,y,12的平均数是6, ∴<2+3+x+y+12)=6, 解得:x+y=13, ∵数据2,3,x,y,12中,唯一的众数是12, ∴x=12,y=1或x=1,y=12, 把这组数据从小到大排列为:1,2,3,12,12, 则这组数据的中位数是3; 故答案为:3. 点评: 本题考查了众数、平均数与中位数的意义,中位数是将一组数据从小到大<或从大到小)重新排列后,最中间的那个数<最中间两个数的平均数),给定一组数据,出现次数最多的那个数,称为这组数据的众数. 14.<3分)<2018•牡丹江)⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为 1或3 .dvzfvkwMI1 考点: 垂径定理;勾股定理. 专题: 分类讨论. 分析: 根据题意画出图形,连接OB,由垂径定理可知BD=BC,在Rt△OBD中,根据勾股定理求出OD的长,进而可得出结论. 解答: 解:如图所示: ∵⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC, ∴AD⊥BC, ∴BD=BC=, 在Rt△OBD中, ∵BD2+OD2=OB2,即<)2+OD2=22,解得OD=1, ∴当如图1所示时,AD=OA﹣OD=2﹣1=1; 当如图2所示时,AD=OA+OD=2+1=3. 故答案为:1或3. 点评: 本题考查的是垂径定理,在解答此题时要进行分类讨论,不要漏解. 15.<3分)<2018•牡丹江)在一个不透明的口袋中有3个完全相同的小球,把它们分别标号为1,2,3,随机地取出一个小球然后放回,再随机地取出一个小球,则两次取出小球的标号的和是3的倍数的概率是.rqyn14ZNXI 考点: 列表法与树状图法. 分析: 列举出所有情况,看两次取出的小球的标号之和是3的倍数情况数占总情况数的多少即可. 解答: 解:树状图如下: 共9种情况,两次取出的小球的标号之和是3的倍数的情况数有3种, 所以两次取出的小球的标号之和是3的倍数的概率为=. 故答案为:. 点评: 考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到两次取出的小球的标号之和是3的倍数的情况数是解决本题的关键. 16.<3分)<2018•牡丹江)如图,是由一些点组成的图形,按此规律,在第n个图形中,点的个数为 n2+2 .EmxvxOtOco 考点: 规律型:图形的变化类. 分析: 分析数据可得:第1个图形中点的个数为3;第2个图形中点的个数为3+3;第3个图形中点的个数为3+3+5;第4个图形中点的个数为3+3+5+7;…则知第n个图形中小圆的个数为3+3+5+7+…+<2n﹣1).据此可以求得答案. 解答: 解:第1个图形中点的个数为3; 第2个图形中点的个数为3+3; 第3个图形中点的个数为3+3+5; 第4个图形中点的个数为3+3+5+7; … 第n个图形中小圆的个数为3+3+5+7+…+<2n﹣1)=n2+2. 故答案为:n2+2. 点评: 此题考查图形与数字结合规律的题目.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 17.<3分)<2018•牡丹江)如图,在△ABC中,AC=BC=8,∠C=90°,点D为BC中点,将△ABC绕点D逆时针旋转45°,得到△A′B′C′,B′C′与AB交于点E,则S四边形ACDE= 28 .SixE2yXPq5 考点: 旋转的性质. 分析: 利用旋转的性质得出∠B=∠BDE=45°,BD=4,进而由S四边形ACDE=S△ACB﹣S△BDE求出即可. 解答: 解:由题意可得:∠B=∠BDE=45°,BD=4, 则∠DEB=90°, ∴BE=DE=2, ∴S△BDE=×2×2=4, ∵S△ACB=×AC×BC=32, ∴S四边形ACDE=S△ACB﹣S△BDE=28. 故答案为:28. 点评: 此题主要考查了旋转的性质以及三角形面积求法,得出S△BDE是解题关键. 18.<3分)<2018•牡丹江)抛物线y=ax2+bx+c经过点A<﹣3,0),对称轴是直线x=﹣1,则a+b+c= 0 .6ewMyirQFL 考点: 二次函数的性质. 分析: 根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为<1,0),由此求出a+b+c的值. 解答: 解:∵抛物线y=ax2+bx+c经过点A<﹣3,0),对称轴是直线x=﹣1, ∴y=ax2+bx+c与x轴的另一交点为<1,0), ∴a+b+c=0. 故答案为0. 点评: 本题考查了二次函数的性质,根据二次函数的对称性求出抛物线y=ax2+bx+c与x轴的另一交点为<1,0)是解题的关键. 19.<3分)<2018•牡丹江)如图,在平面直角坐标系中,点A<0,4),B<3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解读式为 y=﹣x+ .kavU42VRUs 考点: 翻折变换<折叠问题);待定系数法求一次函数解读式. 专题: 计算题. 分析: 在Rt△OAB中,OA=4,OB=3,用勾股定理计算出AB=5,再根据折叠的性质得BA′=BA=5,CA′=CA,则OA′=BA′﹣OB=2,设OC=t,则CA=CA′=4﹣t,在Rt△OA′C中,根据勾股定理得到t2+22=<4﹣t)2,解得t=,则C点坐标为<0,),然后利用待定系数法确定直线BC的解读式. 解答: 解:∵A<0,4),B<3,0), ∴OA=4,OB=3, 在Rt△OAB中,AB==5, ∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处, ∴BA′=BA=5,CA′=CA, ∴OA′=BA′﹣OB=5﹣3=2, 设OC=t,则CA=CA′=4﹣t, 在Rt△OA′C中, ∵OC2+OA′2=CA′2, ∴t2+22=<4﹣t)2,解得t=, ∴C点坐标为<0,), 设直线BC的解读式为y=kx+b, 把B<3,0)、C<0,)代入得,解得, ∴直线BC的解读式为y=﹣x+. 故答案为y=﹣x+. 点评: 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和待定系数法求一次函数解读式. 20.<3分)<2018•牡丹江)矩形ABCD中,AB=2,BC=1,点P是直线BD上一点,且DP=DA,直线AP与直线BC交于点E,则CE=﹣2或+2 .y6v3ALoS89 考点: 矩形的性质;等腰三角形的判定与性质;勾股定理. 专题: 分类讨论. 分析: 依题意画出图形:以点D为圆心,DA长为半径作圆,与直线BC交于点P<有2个),利用等腰三角形的性质分别求出CE的长度. 解答: 解:矩形ABCD中,AB=2,AD=1, 由勾股定理得:BD=. 如图所示,以点D为圆心,DA长为半径作圆,交直线BD于点P1、P2,连接AP1、P2A并延长,分别交直线BC于点E1、E2. ∵DA=DP1, ∴∠1=∠2. ∵AD∥BC, ∴∠4=∠3,又∵∠2=∠3, ∴∠3=∠4, ∴BE1=BP1=, ∴CE1=BE1﹣BC=﹣2; ∵DA=DP2 ∴∠5=∠6 ∵AD∥BC, ∴∠5=∠7, ∴∠6=∠7, ∴BE2=BP2=+1, ∴CE2=BE2+BC=+2. 故答案为:﹣2或+2. 点评: 本题考查了矩形的性质、勾股定理、等腰三角形等知识点.考查重点是分类讨论的数学思想,本题所求值有2个,注意不要漏解. 三、解答题<满分60分) 21.<5分)<2018•牡丹江)先化简,再求值:<x﹣)÷,其中x=cos60°. 考点: 分式的化简求值;特殊角的三角函数值. 分析: 先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可. 解答: 解:原式=÷ =• =, 当x=cos60°=时,原式==﹣. 点评: 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键. 22.<6分)<2018•牡丹江)如图,抛物线y=ax2+2x+c经过点A<0,3),B<﹣1,0),请解答下列问题:M2ub6vSTnP <1)求抛物线的解读式; <2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长. 注:抛物线y=ax2+bx+c<a≠0)的顶点坐标是<﹣,). 考点: 待定系数法求二次函数解读式;二次函数的性质. 专题: 计算题. 分析: <1)将A与B代入抛物线解读式求出a与c的值,即可确定出抛物线解读式; <2)利用顶点坐标公式表示出D坐标,进而确定出E坐标,得到DE与OE的长,根据B坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长. 解答: 解:<1)∵抛物线y=ax2+2x+c经过点A<0,3),B<﹣1,0), ∴将A与B坐标代入得:, 解得:, 则抛物线解读式为y=﹣x2+2x+3; <2)由D为抛物线顶点,得到D<1,4), ∵抛物线与x轴交于点E, ∴DE=4,OE=1, ∵B<﹣1,0), ∴BO=1, ∴BE=2, 在Rt△BED中,根据勾股定理得:BD===2. 点评: 此题考查了待定系数法求二次函数解读式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键. 23.<6分)<2018•牡丹江)在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC于点F,连接AF,请你画出图形,直接写出AF的长,并画出体现解法的辅助线.0YujCfmUCw 考点: 作图—应用与设计作图;全等三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质. 分析: 根据题意画出两个图形,再利用勾股定理得出AF的长. 解答: 解:如图1所示: ∵AB=AC=5,BC=6, ∴AM=4, ∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°, ∴∠CAM=∠DCF, 在△AMC和△CFD中 , ∴△AMC≌△CFD<AAS), ∴AM=CF=4, 故AF==, 如图2所示: ∵AB=AC=5,BC=6, ∴AM=4,MC=3, ∵∠ACM+∠DCF=90°,∠MAC+∠ACM=90°, ∴∠CAM=∠DCF, 在△AMC和△CFD中 , ∴△AMC≌△CFD<AAS), ∴AM=FC=4, ∴FM=FC﹣MC=1, 故AF==. 注:每图1分<图1中没有辅助线、没有直角符号均不给分;图2中没有辅助线、没有直角符号、点B在正方形外均不给分). 点评: 此题主要考查了应用设计与作图,利用分类讨论得出是解题关键. 24.<7分)<2018•牡丹江)某校为了了解本校九年级学生的视力情况<视力情况分为:不近视,轻度近视,中度近视,重度近视),随机对九年级的部分学生进行了抽样调查,将调查结果进行整理后,绘制了如下不完整的统计图,其中不近视与重度近视人数的和是中度近视人数的2倍.eUts8ZQVRd 请你根据以上信息解答下列问题: <1)求本次调查的学生人数; <2)补全条形统计图,在扇形统计图中,“不近视”对应扇形的圆心角度数是 144 度; <3)若该校九年级学生有1050人,请你估计该校九年级近视<包括轻度近视,中度近视,重度近视)的学生大约有多少人.sQsAEJkW5T 考点: 条形统计图;用样本估计总体;扇形统计图. 分析: <1)根据轻度近视的人数是14人,占总人数的28%,即可求得总人数; <2)设中度近视的人数是x人,则不近视与重度近视人数的和2x,列方程求得x的值,即可求得不近视的人数,然后利用360°乘以对应的百分比即可求得圆心角的度数; <3)利用总人数乘以对应的百分比即可求解. 解答: 解:<1)本次调查的学生数是:14÷28%=50<人); <2)设中度近视的人数是x人,则不近视与重度近视人数的和2x,则x+2x+14=50, 解得:x=12, 则中度近视的人数是12,不近视的人数是:24﹣4=20<人), 则“不近视”对应扇形的圆心角度数是:360°×=144°; <3)1050×=630<人). 答:该校九年级近视<包括轻度近视,中度近视,重度近视)的学生大约630人. 点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个工程的数据;扇形统计图直接反映部分占总体的百分比大小. 25.<8分)<2018•牡丹江)快、慢两车分别从相距480千M路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地<快车掉头的时间忽略不计),快、慢两车距乙地的路程y<千M)与所用时间x<小时)之间的函数图象如图,请结合图象信息解答下列问题:GMsIasNXkA <1)直接写出慢车的行驶速度和a的值; <2)快车与慢车第一次相遇时,距离甲地的路程是多少千M? <3)两车出发后几小时相距的路程为200千M?请直接写出答案. 考点: 一次函数的应用. 分析: <1)根据行程问题的数量关系速度=路程÷时间及路程=速度×时间就可以得出结论; <2)由<1)的结论可以求出点D的坐标,再由题意可以求出快车的速度就可以求出点B的坐标,由待定系数法求出AB的解读式及OD的解读式就可以求出结论; <3)根据<2)的结论,由待定系数法求出求出直线BC的解读式和直线EF的解读式,再由一次函数与一元一次方程的关系建立方程就可以求出结论. 解答: 解:<1)由题意,得 慢车的速度为:480÷<9﹣1)=60千M/时, ∴a=60×<7﹣1)=360. 答:慢车的行驶速度为60千M/时和a=360千M; <2)由题意,得 5×60=300, ∴D<5,300),设yOD=k1x,由题意,得 300=5k1, ∴k1=60, ∴yOD=60x. ∵快车的速度为:<480+360)÷7=120千M/时. ∴480÷120=4小时. ∴B<4,0),C<8,480). 设yAB=k2x+b,由题意,得 , 解得:, ∴yAB=﹣120x+480 ∴, 解得:. ∴480﹣160=320千M. 答:快车与慢车第一次相遇时,距离甲地的路程是320千M; <3)设直线BC的解读式为yBC=k3x+b3,由题意,得 , 解得:, ∴yBC=120x﹣480; 设直线EF的解读式为yEF=k4x+b4,由题意,得 , 解得:, ∴yEF=60x﹣60. 当60x﹣<﹣120x+480)=200时, 解得:x=; 当60x﹣<﹣120x+480)=﹣200时 解得:x=; 当120x﹣480﹣<60x﹣60)=200时, 解得:x=>9<舍去). 当120x﹣480﹣<60x﹣60)=﹣200时 解得:x=<4<舍去); 当120x﹣480﹣60x=﹣200时 解得:x=. 综上所述:两车出发小时、小时或小时时,两车相距的路程为200千M. 点评: 本题考查了行程问题的数量关系路程=速度×时间的运用,待定系数法求一次函数的解读式的运用,一次函数与一元一次方程的关系的运用,解答时求出一次函数的解读式是关键. 26.<8分)<2018•牡丹江)如图,在等边△ABC中,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.TIrRGchYzg <1)当点D在线段BC上,∠NDB为锐角时,如图①,求证:CF+BE=CD; <提示:过点F作FM∥BC交射线AB于点M.) <2)当点D在线段BC的延长线上,∠NDB为锐角时,如图②;当点D在线段CB的延长线上,∠NDB为钝角时,如图③,请分别写出线段CF,BE,CD之间的数量关系,不需要证明;7EqZcWLZNX <3)在<2)的条件下,若∠ADC=30°,S△ABC=4,则BE= 8 ,CD= 4或8 .- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 黑龙江省 牡丹江市 中考 数学试卷 答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文