2017全国各地中考数学压轴题汇编之1.doc
《2017全国各地中考数学压轴题汇编之1.doc》由会员分享,可在线阅读,更多相关《2017全国各地中考数学压轴题汇编之1.doc(44页珍藏版)》请在咨信网上搜索。
44 2017全国各地中考数学压轴题汇编之一 1.(2017江苏淮安,28,14分)如图①,在平面直角坐标系中,二次函数=的图像与坐标轴交于A、B、C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为秒.连接PQ. (1)填空:=________,=________; (2)在点P、Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在轴下方,该二次函数的图像上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间;若不存在,请说明理由; (4)如图②,点N的坐标为(,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标. 图① 图② 备用图 【分析】(1)将A(-3,0)、B(4,0)代入=即可求解;(2)若△APQ为直角三角形,则∠APQ=90°(∠PAQ与∠PQA不可能为直角).连接QC,则AQ2-AP2=QC2-PC2=PQ2,据此列出关于的方程求解,若的值满足0≤≤4,则△APQ可能是直角三角形,否则不可能;(3)①过点P作DE∥轴,分别过点M、Q作MD⊥DE,QE⊥DE,垂足分别为D、E,构成“一线三直角”全等模型,用含的式子表示点M的坐标;②将点M的坐标代入二次函数的表达式求解;(4)①分别求直线BC、直线NQ′的函数表达式;②解直线BC、NQ′的函数达式组成的方程组. 【解析】(1)=,=4. (2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下: 若△APQ是直角三角形,因为在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,所以∠APQ=90°. ∴AQ2-AP2=QC2-PC2=PQ2. 连接QC. 由(1)知抛物线的函数表达式为=,当=0时,=4. ∴C(0,4). ∴OC=4. ∵A(-3,0), ∴OA=3. 由题意,得AP=OQ=. ∴AQ=OA+OQ=. 在Rt△AOC中,由勾股定理得AC===5. ∴PC=. 在Rt△OCQ中,QC2=OQ2+OC2=. ∵∠APQ=90°, ∴AQ2-AP2=QC2-PC2=PQ2. ∴=. 解得=4.5. 由题意知0≤≤4. ∴=4.5不符合题意,舍去. ∴在点P、Q运动过程中,△APQ不可能是直角三角形. (3)如图,过点P作DE∥轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为点D、E,MD交轴于点F,过点P作PG⊥轴,垂足为点G,则PG∥轴,∠D=∠E=90°. ∴△APG∽△ACO. ∴==,即==. ∴PG=,AG=. ∴PE=GQ=GO+OQ=AO-AG+OQ==,DF=EQ=. ∵∠MPQ=90°,∠D=90°, ∴∠DMP+∠DPM=∠EPQ+∠DPM=90°. ∴∠DMP=∠EPQ. 又∵∠D=∠E,PM=PQ, ∴△MDP≌△PEQ. ∴PD=EQ=,MD=PE=. ∴AM=MD-DF==, OF=FG+GO=PD+OA-AG==. ∴M(,). ∵点M在轴下方的抛物线上, ∴=. 解得=. ∵0≤≤4, ∴=. (4)Q′(,). 提示:连接OP,取OP中点R,连接RH、NR,延长NR交线段BC于点Q′. ∵点H为PQ的中点,点R为OP的中点, ∴RH=OQ=,RH∥OQ. ∵A(-3,0)、N(,0), ∴点N为OA的中点. 又∵点R为OP的中点, ∴NR=AP=,RN∥AC. ∴RH=NR. ∴∠RNH=∠RHN. ∵RH∥OQ, ∴∠RHN=∠HNO. ∴∠RNH=∠HNO,即NH是∠QNQ′的平分线. 设直线AC的函数表达式为=,把A(-3,0)、C(0,4)代入,得 解得=,=4. ∴直线AC的函数表达式为=. 同理可求,直线BC的函数表达式为=. 设直线NR的函数表达式为=,把N(,0)代入,得 0=. 解得=2. ∴直线NR的函数表达式为=. 解方程组得 ∴Q′(,). 2.(2017江苏南京,27,11分)折纸的思考. 【操作体验】 用一张矩形纸片折等边三角形. 第一步,对折矩形纸片ABCD(AB>BC)(图①),使AB与DC重合,得到折痕EF,把纸片展平(图②). 第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到△PBC. (1)说明△PBC是等边三角形. 【数学思考】 (2)如图④.小明画出了图③的矩形ABCD和等边三角形PBC.他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形.请描述图形变化的过程. (3)已知矩形一边长为3cm,另一边长为acm.对于每一个确定的a的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的a的取值范围. 【问题解决】 (4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为 cm. 【分析】(1)由折叠的性质,线段垂直平分线的性质可判断; (2)根据旋转的性质和位似变换直接作图,写出过程即可; (3)根据图形,由勾股定理和等边三角形的性质求解; (4)由勾股定理和正方形的性质的性质直接求解. 【解析】(1)由折叠,PB=PC,EF是BC的垂直平分线, ∴PB=PC, ∴PB=PC=BC , ∴△PBC是等边三角形. (2)本题答案不惟一.例如, 如图,以点B为中心,在矩形ABCD中把△PBC逆时针方向旋转适当的角度,得到△P1B1C1; 再以点B为位似中心,将△P1B1C1放大,使C1的对应点C2落在CD上,得到△P2BC2. (3) 当等边三角形的边长为3cm,acm为高时,则a=332, 当等边三角形的边长为acm,3cm为高时,则a=23, 然后分0<a≤332,332<a<23,a≥23画出示意图. (4)165. 当以4cm的直角边与正方形的边重合时,边长为4cm,正方形的面积为16cm2; 当直角三角形的一个顶点与正方形的顶点重合,两外两个顶点在边上时,如图, ∵四边形ABCD是正方形, ∴BC=CD,∠C=∠D=90°. ∵∠BFE=90°, ∴∠BFC+∠EFD=90°,∠BFC+∠CBF=90°, ∴∠EFD=∠CBF, ∴△BCF∽△FDE, ∴BC∶DF=BF∶EF. 设BC=a,由BF=4, 得CF=16-a2,则DF=a-16-a2, 可知a∶( a-16-a2)=4∶1 解得a=165. 正方形得面积为25625. 因为25625<16, 所以a=165. 3.(2017江苏连云港,27,14分)问题呈现: 如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AE=DG,求证:2S四边形EFGH=S矩形ABCD.(S表示面积) 实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1. 如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S四边形EFGH=S矩形ABCD+. 如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩形ABCD与之间的数量关系,并说明理由. 迁移应用: 请直接应用“实验探究”中发现的结论解答下列问题: (1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH=11,HF=,求EG的长. (2)如图5,在矩形ABCD中,AB=3,AD=5,点E、H分别在边AB、AD上,BE=1,DH=2,点F、G分别是边BC、CD上的动点,且FG=,连接EF、HG,请直接写出四边形EFGH面积的最大值. 【分析】问题呈现:根据矩形的性质,通过割补法利用三角形的面积和矩形的面积可得到结论;实验探究:由题意得当将点G向点D靠近()时,通过割补法利用三角形的面积和矩形的面积可得到结论;迁移应用:(1)由上面的结论,结合图形,通过割补法利用三角形的面积和矩形的面积可得到结论;(2)直接根据规律写出结果即可. 【解析】问题呈现:证明:如图1中, ∵四边形ABCD是矩形, ∴AB∥CD,∠A=90°, ∵AE=DG, ∴四边形AEGD是矩形, ∴S△HGE=S矩形AEGD, 同理S△EGF=S矩形BEGC, ∴S四边形EFGH=S△HGE+S△EFG=S矩形BEGC. 实验探究:结论:2S四边形EFGH=S矩形ABCD-. 理由:∵=,=,=,=, ∴S四边形EFGH=+++-, ∴2S四边形EFGH=2+2+2+2-2, ∴2S四边形EFGH=S矩形ABCD-. 迁移应用:解:(1)如图4中, ∵2S四边形EFGH=S矩形ABCD-. ∴=25-2×11=3=A1B1·A1D1, ∵正方形的面积为25,∴边长为5, ∵A1D12=HF2-52=29-25=4, ∴A1D1=2,A1B1=, ∴EG2=A1B12+52=, EG=. (2)∵2S四边形EFGH=S矩形ABCD+. ∴四边形A1B1C1D1面积最大时,矩形EFGH的面积最大. ①如图5-1中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大. 此时矩形A1B1C1D1面积=1·(-2)= ②如图5-2中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大. 此时矩形A1B1C1D1面积=2·1=2, ∵2>-2, ∴矩形EFGH的面积最大值=. 4.(2017江苏南通,28,13分)已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D. (1)若∠AOB=60°,AB∥x轴,AB=2,求a的值; (2)若∠AOB=90°,点A的横坐标为-4,AC=4BC,求点B的坐标; (3)延长AD、BO相交于点E,求证:DE=CO. 【分析】(1)如图1,由条件可知△AOB为等边三角形,则可求得OA的长,在Rt△AOD中可求得AD和OD的长,可求得A点坐标,代入抛物线解析式可得a的值; (2)如图2,作辅助线,构建平行线和相似三角形,根据CF∥BG,由A的横坐标为-4,得B的横坐标为1,所以A(-4,16a),B(1,a),证明△ADO∽△OEB,则,得a的值及B的坐标; (3)如图3,设AC=nBC由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(-mn,am2n2),分别根据两三角形相似计算DE和CO的长即可得出结论. 【解析】解:(1)如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴, ∴A与B是对称点,O是抛物线的顶点, ∴OA=OB, ∵∠AOB=60°, ∴△AOB是等边三角形, ∵AB=2,AB⊥OC, ∴AC=BC=1,∠BOC=30°, ∴OC=, ∴A(-1,), 把A(-1,)代入抛物线y=ax2(a>0)中得:a=; (2)如图2,过B作BE⊥x轴于E,过A作AG⊥BE,交BE延长线于点G,交y轴于F, ∵CF∥BG, ∴, ∵AC=4BC, ∴=4, ∴AF=4FG, ∵A的横坐标为-4, ∴B的横坐标为1, ∴A(-4,16a),B(1,a), ∵∠AOB=90°, ∴∠AOD+∠BOE=90°, ∵∠AOD+∠DAO=90°, ∴∠BOE=∠DAO, ∵∠ADO=∠OEB=90°, ∴△ADO∽△OEB, ∴, ∴, ∴16a2=4, a=±, ∵a>0, ∴a=; ∴B(1,); (3)如图3,设AC=nBC, 由(2)同理可知:A的横坐标是B的横坐标的n倍, 则设B(m,am2),则A(-mn,am2n2), ∴AD=am2n2, 过B作BF⊥x轴于F, ∴DE∥BF, ∴△BOF∽△EOD, ∴, ∴, ∴,DE=am2n, ∴, ∵OC∥AE, ∴△BCO∽△BAE, ∴, ∴, ∴CO==am2n, ∴DE=CO. 5.(2017江苏苏州,28,10分)如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点. (1)求b、c的值; (2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标; (3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由. 【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OB=OC,可用c表示出B点坐标,代入抛物线解析式可求得c的值; (2)可设F(0,m),则可表示出F′的坐标,由B、E的坐标可求得直线BE的解析式,把F′坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标; (3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QR⊥PN,垂足为R,则可求得QR的长,用n可表示出Q、R、N的坐标,在Rt△QRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标, 【解析】解: (1)∵CD∥x轴,CD=2, ∴抛物线对称轴为x=1. ∴-=2,b=-2. ∵OB=OC,C(0,c), ∴B点的坐标为(-c,0), ∴0=c2+2c+c,解得c=-3或c=0(舍去), ∴c=-3; (2)设点F的坐标为(0,m). ∵对称轴为直线x=1, ∴点F关于直线l的对称点F的坐标为(2,m). 由(1)可知抛物线解析式为y=x2-2x-3=(x-1)2-4, ∴E(1,-4), ∵直线BE经过点B(3,0),E(1,-4), ∴利用待定系数法可得直线BE的表达式为y=2x-6. ∵点F在BE上, ∴m=2×2-6=-2,即点F的坐标为(0,-2); (3)存在点Q满足题意. 设点P坐标为(n,0),则PA=n+1,PB=PM=3-n,PN=-n2+2n+3. 作QR⊥PN,垂足为R, ∵S△PQN=S△APM, ∴(n+1)(3-n)=(-n2+2n+3) ·QR, ∴QR=1. ①点Q在直线PN的左侧时,Q点的坐标为(n-1,n2-4n),R点的坐标为(n,n2-4n),N点的坐标为(n,n2-2n-3). ∴在Rt△QRN中,NQ2=1+(2n-3)2, ∴n=时,NQ取最小值1.此时Q点的坐标为(,-); ②点Q在直线PN的右侧时,Q点的坐标为(n+11,n2-4). 同理,NQ2=1+(2n-1)2, ∴n=时,NQ取最小值1.此时Q点的坐标为(,-). 综上可知存在满足题意的点Q,其坐标为(,-)或(,-). 6.(2017江苏泰州,26,14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=-x2+(m-2)x+2m的图象经过点A、B,且a、m满足2a-m=d(d为常数). (1)若一次函数y1=kx+b的图象经过A、B两点. ①当a=1、d=-1时,求k的值; ②若y1随x的增大而减小,求d的取值范围; (2)当d=-4且a≠-2、a≠-4时,判断直线AB与x轴的位置关系,并说明理由; (3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由. 【分析】(1)①当a=1、d=-1时,m=2a-d=3,于是得到抛物线的解析式,然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可; ②将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到-(a-m)(a+2)>-(a+2-m)(a+4),结合已知条件2a-m=d,可求得d的取值范围; (2)由d=-4可得到m=2a+4,则抛物线的解析式为y=-x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系; (3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m-8),于是可得到CD与m的关系式. 【解析】解:(1)①当a=1、d=-1时,m=2a-d=3, 所以二次函数的表达式是y=-x2+x+6. ∵a=1, ∴点A的横坐标为1,点B的横坐标为3, 把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0, ∴A(1,6),B(3,0). 将点A和点B的坐标代入直线的解析式得:,解得:, 所以k的值为-3. ②∵y=-x2+(m-2)x+2m=-(x-m)(x+2), ∴当x=a时,y=-(a-m)(a+2);当x=a+2时,y=-(a+2-4)(a+4), ∵y1随着x的增大而减小,且a<a+2, ∴-(a-m)(a+2)>-(a+2-m)(a+4),解得:2a-m>-4, 又∵2a-m=d, ∴d的取值范围为d>-4. (2)∵d=-4且a≠-2、a≠-4,2a-m=d, ∴m=2a+4. ∴二次函数的关系式为y=-x2+(2a+2)x+4a+8. 把x=a代入抛物线的解析式得:y=a2+6a+8. 把x=a+2代入抛物线的解析式得:y=a2+6a+8. ∴A(a,a2+6a+8)、B(a+2,a2+6a+8). ∵点A、点B的纵坐标相同, ∴AB∥x轴. (3)线段CD的长随m的值的变化而变化. ∵y=-x2+(m-2)x+2m过点A、点B, ∴当x=a时,y=-a2+(m-2)a+2m,当x=a+2时,y=-(a+2)2+(m-2)(a+2)+2m, ∴A(a,-a2+(m-2)a+2m)、B(a+2,-(a+2)2+(m-2)(a+2)+2m). ∴点A运动的路线是的函数关系式为y1=-a2+(m-2)a+2m,点B运动的路线的函数关系式为y2=-(a+2)2+(m-2)(a+2)+2m. ∴点C(0,2m),D(0,4m-8). ∴DC=|2m-(4m-8)|=|8-2m|. ∴线段CD的长随m的值的变化而变化. 当8-2m=0时,m=4时,CD=|8-2m|=0,即点C与点D重合;当m>4时,CD=2m-8;当m<4时,CD=8-2m. 7.(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s). (1)若m=6,求当P,E,B三点在同一直线上时对应的t的值. (2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围. 【分析】(1)如图1中,设PD=x.则PA=6-x.首先证明BP=BC=6,在Rt△ABP中利用勾股定理即可解决问题; (2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3; 【解析】解:(1)如图1中,设PD=x.则PA=6-x. ∵P、B、E共线, ∴∠BPC=∠DPC, ∵AD∥BC, ∴∠DPC=∠PCB, ∴∠BPC=∠PCB, ∴BP=BC=6, 在Rt△ABP中,∵AB2+AP2=PB2, ∴42+(6-x)2=62, ∴x=6-2或6+2(舍弃), ∴PD=6-2, ∴t=(6-2)s时,B、E、P共线. (2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3. 作EQ⊥BC于Q,EM⊥DC于M.则EQ=3,CE=DC=4 易证四边形EMCQ是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=, ∵∠DAC=∠EDM,∠ADC=∠M, ∴△ADC∽△DME, , ∴, ∴AD=4, 如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3. 作EQ⊥BC于Q,延长QE交AD于M.则EQ=3,CE=DC=4 在Rt△ECQ中,QC=DM=, 由△DME∽△CDA, ∴, ∴, ∴AD=, 综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围≤m<4. 8.(2017江苏宿迁,26,10分)如图,在矩形纸片ABCD中,已知AB=1,BC=,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′. (1)当B′C′恰好经过点D时(如图1),求线段CE的长; (2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积; (3)在点E从点C移动到点D的过程中,求点C′运动的路径长. 【分析】(1)如图1中,设CE=EC′=x,则DE=1-x,由△ADB′′∽△DEC,可得=,列出方程即可解决问题; (2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题; (3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题. 【解析】解:(1)如图1中,设CE=EC′=x,则DE=1-x, ∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°, ∴∠B′AD=∠EDC′, ∵∠B′=∠C′=90°,AB′=AB=1,AD=, ∴DB′==, ∴△ADB′′∽△DEC, ∴=, ∴=, ∴x=-2. ∴CE=-2. (2)如图2中, ∵∠BAD=∠B′=∠D=90°,∠DAE=22.5°, ∴∠EAB=∠EAB′=67.5°, ∴∠B′AF=∠B′FA=45°, ∴∠DFG=∠AFB′=∠DGF=45°, ∴DF=FG, 在Rt△AB′F中,AB′=FB′=1, ∴AF=AB′=, ∴DF=DG=-, ∴S△DFG=(-)2=-. (3)如图3中,点C的运动路径的长为的长, 在Rt△ADC中,∵tan∠DAC==, ∴∠DAC=30°,AC=2CD=2, ∵∠C′AD=∠DAC=30°, ∴∠CAC′=60°, ∴的长==π. 9.(2017江苏徐州,28,10分)如图,已知二次函数y=x2-4的图象与x轴交于A,B两点,与y轴交于点C,⊙C的半径为,P为⊙C上一动点. (1)点B,C的坐标分别为B( ),C( ); (2)是否存在点P,使得△PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由; (3)连接PB,若E为PB的中点,连接OE,则OE的最大值= . 【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标; (2)①当PB与⊙相切时,△PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2E⊥x轴于E,P2F⊥y轴于F,根据相似三角形的性质得到=2,设OC=P2E=2x,CP2=OE=x,得到BE=3-x,CF=2x-4,于是得到FP2=,EP2=,求得P2(,-),过P1作P1G⊥x轴于G,P1H⊥y轴于H,同理求得P1(-1,-2),②当BC⊥PC时,△PBC为直角三角形,根据相似三角形的判定和性质即可得到结论; (3)如图3中,连接AP,∵OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大, 【解析】解:(1)在y=x2-4中,令y=0,则x=±3,令x=0,则y=-4, ∴B(3,0),C(0,-4); 故答案为:3,0;0,-4; (2)存在点P,使得△PBC为直角三角形, ①当PB与⊙相切时,△PBC为直角三角形,如图(2)a, 连接BC, ∵OB=3.OC=4, ∴BC=5, ∵CP2⊥BP2,CP2=, ∴BP2=2, 过P2作P2E⊥x轴于E,P2F⊥y轴于F, 则△CP2F∽△BP2E,四边形OCP2B是矩形, ∴=2, 设OC=P2E=2x,CP2=OE=x, ∴BE=3-x,CF=2x-4, ∴==2, ∴x=,2x=, ∴FP2=,EP2=, ∴P2(,-), 过P1作P1G⊥x轴于G,P1H⊥y轴于H, 同理求得P1(-1,-2), ②当BC⊥PC时,△PBC为直角三角形,如图(2)b 过P4作P4H⊥y轴于H, 则△BOC∽△CHP4, ∴==, ∴CH=,P4H=, ∴P4(,--4); 同理P3(-,-4); 综上所述:点P的坐标为:(-1,-2)或(,-)或(,--4)或(-,-4); (3)如图(3),连接AP,∵OB=OA,BE=EP, ∴OE=AP, ∴当AP最大时,OE的值最大, ∵当P在AC的延长线上时,AP的值最大,最大值=5+, ∴OE的最大值为 故答案为:. 10.(2017江苏盐城,27,14分)如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴的另一交点为点B. (1)求抛物线的函数表达式; (2)点D为直线AC上方抛物线上一动点; ①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值; ②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由. 【分析】(1)根据题意得到A(-4,0),C(0,2)代入y=-x2+bx+c,于是得到结论; (2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论; ②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-,0),得到PA=PC=PB=,过作x轴的平行线交y轴于R,交AC的延线于G,情况一:如图,∠DCF=2∠BAC=∠DGC+∠CDG,情况二,∠FDC=2∠BAC,解直角三角形即可得到结论. 【解析】解:(1)根据题意得A(-4,0),C(0,2), ∵抛物线y=-x2+bx+c经过A、C两点, ∴, ∴, ∴y=-x2-x+2; (2)①如图,令y=0, ∴-x2-x+2=0, ∴x1=-4,x2=1, ∴B(1,0), 过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N, ∴DM∥BN, ∴△DME∽△BNE, ∴==, 设D(a,-a2-a+2), ∴M(a,a+2), ∵B(1.0), ∴N(1,), ∴===-(a+2)2+; ∴当a=2时,的最大值是; ②∵A(-4,0),B(1,0),C(0,2), ∴AC=2,BC=,AB=5, ∴AC2+BC2=AB2, ∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P, ∴P(-,0), ∴PA=PC=PB=, ∴∠CPO=2∠BAC, ∴tan∠CPO=tan(2∠BAC)=, 过D作x轴的平行线交y轴于R,交AC的延长线于G, 情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG, ∴∠CDG=∠BAC, ∴tan∠CDG=tan∠BAC=, 即= 令D(a,-a2-a+2), ∴DR=-a,RC=-a2-a, ∴=, ∴a1=0(舍去),a2=-2, ∴xD=-2, 情况二,∴∠FDC=2∠BAC, ∴tan∠FDC=, 设FC=4k, ∴DF=3k,DC=5k, ∵tan∠DGC==, ∴FG=6k, ∴CG=2k,DG=3k,∴ ∴RC=k,RG=k, DR=3k-k=k, ∴==, ∴a1=0(舍去),a2=, 点D的横坐标为-2或-. 11.(2017江苏扬州,28,12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O. (1)若AP=1,则AE= ; (2)①求证:点O一定在△APE的外接圆上; ②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长; (3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值. 【分析】(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长; (2)①A、P、O、E四点共圆,即可得出结论; ②连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案; (3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE=x﹣x 2=﹣ (x﹣2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可. 【解析】(1)解:∵四边形ABCD、四边形PEFG是正方形, ∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°, ∴∠AEP+∠APE=90°,∠BPC+∠APE=90°, ∴∠AEP=∠PBC, ∴△APE∽△BCP, ∴,即, 解得:AE=; 故答案为:; (2)①证明:∵PF⊥EG, ∴∠EOF=90°, ∴∠EOF+∠A=180°, ∴A、P、O、E四点共圆, ∴点O一定在△APE的外接圆上; ②解:连接OA、AC,如图1所示: ∵四边形ABCD是正方形, ∴∠B=90°,∠BAC=45°, ∴AC==4, ∵A、P、O、E四点共圆, ∴∠OAP=∠OEP=45°, ∴点O在AC上, 当P运动到点B时,O为AC的中点,OA=AC=2, 即点O经过的路径长为2; (3)解:设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示: 则MN∥AE, ∵ME=MP, ∴AN=PN, ∴MN=AE, 设AP= x,则BP=4﹣x, 由(1)得:△APE∽△BCP, ∴,即, 解得:AE= x﹣x 2=﹣ (x﹣2)2+1, ∴x=2时,AE的最大值为1,此时MN的值最大=×1=, 即△APE的圆心到AB边的距离的最大值为. 12.(2017江苏镇江,28,11分)【回顾】 如图1,△ABC中,∠B=30°,AB=3,BC=4,则△ABC的面积等于 3 . 【探究】 图2是同学们熟悉的一副三角尺,一个含有30°的角,较短的直角边长为a;另一个含有45°的角,直角边长为b,小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3),用了两种不同的方法计算它的面积,从而推出sin75°=,小丽用两副这样的三角尺拼成了一个矩形EFGH(如图4),也推出sin75°=,请你写出小明或小丽推出sin75°=的具体说理过程. 【应用】 在四边形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如图5) (1)点E在AD上,设t=BE+CE,求t2的最小值; (2)点F在AB上,将△BCF沿CF翻折,点B落在AD上的点G处,点G是AD的中点吗?说明理由. 【分析】回顾:如图1中,作AH⊥BC.求出AH即可解决问题; 探究:如图2中,根据S四边形ABCD=BC•AB•sin75°=2S△ABE+2S△BFC+S矩形EFGH列出方程即可解决问题; 应用:①作C关于AD的对称点H,CH交AD于J,连接BH,EH.因为EC=EH,推出EB+EC=EB+EH,在△EBH中,BE+EH≥BH,推出BE+EC的最小值为BH,求出BH即可解决问题; ②结论:点G不是AD的中点.理由反证法证明即可. 【解析】由题意可知四边形EFGH是矩形,AB=CD=2a,AH=DH=BF=CF=b,EF=GH=a-b,EH=FG=b-a,BC=b, 解:回顾:如图1中,作AH⊥BC. 在Rt△ABH中,∵∠B=30°,AB=3, ∴AH=AB•sin30°=, ∴S△ABC=•BC•AH=×4×=3, 故答案为3. 探究:如图3中, 由题意可知四边形EFGH是矩形,AB=CD=2a,AH=DH=BF=CF=b,EF=GH=a-b,EH=FG=b-a,BC=b, ∵S四边形ABCD=BC•AB•sin75°=2S△ABE+2S△BFC+S矩形EFGH ∴b•2a•sin75°=2××a×a+2××b2+(a-b)(b-a), ∴2absin75°=ab+ab, ∴sin75°=. 如图4中, 易知四边形ABCD是平行四边形,∠BAD=75°, ∴S四边形EFGH=2•S△ABE+2•S△ADF+S平行四边形ABCD, ∴(a+b)(a+b)═2××a×a+2××b2+b•2a•sin75°, ∴sin75°=. 应用:①作C关于AD的对称点H,CH交AD于J,连接BH,EH. 在Rt△DCJ中,JC=CD•sin75°=(+), ∴CH=2CJ=(+), 在Rt△BHC中,BH2=BC2+CH2=36+(+)2=86+25, ∵EC=EH, ∴EB+EC=EB+EH, 在△EBH中,BE+EH≥BH, ∴BE+EC的最小值为BH, ∴t=BE+CE,t2的最小值为BH2,即为86+25. ②结论:点G不是AD的中点. 理由:作CJ⊥AD于J,DH⊥CG于H. 不妨设AG=GD=5,∵CD=5, ∴DC=DG,∵DH⊥CG, ∴GH=CH=3, 在Rt△CDH中,DH===4, ∵S△DGC=•CG•DH=•DG•CJ, ∴CJ=, ∴sin∠CDJ==, ∵∠CDJ=75°, ∴与sin75°=矛盾, ∴假设不成立, ∴点G不是AD的中点.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 全国各地 中考 数学 压轴 汇编
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文