NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究.docx
《NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究.docx》由会员分享,可在线阅读,更多相关《NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究.docx(11页珍藏版)》请在咨信网上搜索。
1、NMDA依赖的突触长时程增强和长时程抑制模型与仿真研究【摘要】 目的: 探究突触长时程增强和长时程抑制与NMDA受体亚型活性状态间的相关机制. 方法: 通过对NMDA受体亚型通道的动力学差异特性进行分析,提出一个修正的突触后钙信号模型来描述NMDA受体不同亚型的活性状态与突触前刺激频率的关系,并结合突触后钙依赖信号网络模型,建立了一个关于海马CA3CA1突触长时程增强和长时程抑制的生物物理模型. 结果: 根据LTP和LTD诱导条件,对NMDA依赖的突触长时程增强和长时程抑制的诱导和形成过程进行了仿真. 结论: 诱导LTD所需的钙暂态可能来源于NMDA通道的NR2B亚型的钙内流,而与LTP的诱导
2、过程相对应的钙信号可能主要是通过该受体NR2A亚型通道的钙内流产生.【关键词】 长时程增强;长时程抑制;受体,N甲基D天冬氨酸;生物物理模型0引言海马神经元突触长时程增强和长时程压抑是突触长时程修饰的主要表现形式,是研究学习记忆过程的突触模型. NMDA受体的激活是海马CA3CA1突触LTP和LTD的诱导过程所必需的,同一种受体的激活如何能导致完全相反的突触强度修饰结果目前尚未明确1. 选择性地阻断含有NR2A或NR2B亚基的受体会导致该突触上LTP或LTD的诱导失败2. NMDA受体两种亚型通道所介导的不同钙暂态可能会导致突触后信号转导通路到达不同的稳态. 由于目前的实验条件很难对上述机制进
3、行研究,我们意图通过模拟突触前施加一定频率的刺激造成的NMDA受体不同亚型活性状态改变以及由此引发的钙暂态变化,并结合一个突触后钙信号转导网络的生化模型,对NMDA依赖的海马突触LTP和LTD诱导形成过程进行仿真,以探究LTP和LTD的形成与NMDA受体亚型活性状态间的相关机制. 1方法 通道的组成及其电生理特性NMDA受体通道由NR1亚基和至少一种NR2亚基组装而成,NR2亚基又可分为NR2A, NR2B, NR2C和NR2D 4种,不同的NR2亚基介导了NMDA受体异聚体不同的门控和药理学功能3. 成熟小鼠的海马CA1区突触中主要包含的NMDAR亚型为NR1/NR2A, NR1/NR2B和
4、NR1/NR2A/NR2B,其中包含NR2B的受体亚型主要介导通道电流快的成分,而包含NR2A的亚型则主要介导通道电流中慢的成分,他们在特定区域表达的不同比例会影响NMDA受体的时间常数.在静息电位时,NMDA被Mg2+以电压依赖方式阻断而失活. 膜的去极化可解除Mg2+对通道的阻滞作用,在谷氨酸存在的情况下,NMDA通道被激活. 不同的NMDA受体亚型所介导的钙内流暂态动力学特性可以通过各自的时间常数来反映. 根据文献4 的结论,NMDA通道介导的单位面积钙内流可以表示为:INMDA=P*(Nfe-(t-i/f)/f+Nse-(t-i/f/s)*B(V)(V-Vr)B(V)=1+exp(-*
5、V)*(Mg/)-1 其中,P=,代表单位面积上开放的NMDA受体通道数量;f为突触前刺激频率;用V代表突触后极化电压,量纲为伏特;Vr=130 V代表钙的翻转电压,(V-Vr)则代表驱动力;B(V)代表镁离子对通道的影响, 其中,Mg=1 mmol/L;而Nf和Ns分别代表被激活的NR2A和NR2B亚型受体的含量. 为了反映不同亚型在实验中表现的不同特性,我们将其定义为突触后极化电压的函数:Nf=1-(V-65)/195)2Ns(V-65)/195)2 在大多数的实验记录中,突触后极化电压与突触前刺激频率呈线性依赖关系3,我们假定突触后极化电压V的幅值由下面的表达式决定:V=65V-f*(V
6、/Hz)突触后钙信号的动力学特性在海马CA1区域,突触前阈值下刺激导致EPSP产生时,NMDA介导的钙内流被认为是突触后钙的主要来源1. 假定树突棘内钙的时间常数(Ca)为50 ms,突触后钙信号的变化可以通过下面的数学式子描述:dCa(t)/dt=INMDA-Ca(t)/Ca静息状态的胞内钙浓度约为 mol/L,我们得到突触后钙暂态的数学形式:Ca(t)=+e-t/Ca*n1INMDA介导突触可塑性形成的钙信号转导生化网络细胞内与突触长时程可塑性有关的钙敏感酶类主要包括蛋白激酶A、钙/钙调素依赖蛋白激酶、钙调神经磷酸酶及蛋白磷酸酶1等. 目前认为突触传递效能的可塑性主要表达为,突触后AMPA
7、受体的的功能和数量的双向调节1: PKA对AMPA受体的S_845位点的磷酸化是AMPA受体向突触后膜的转运是必需的;而CaMK通过磷酸化AMPA受体的S_831位点而增加其单个通道的电导,PP1通过将AMPA受体上述位点脱磷酸化而导致其在突触后膜的活性水平下调,并介导PSD内CaMK的失活;CaN和PKA则通过磷酸化调节蛋白磷酸化酶1的抑制剂-1,影响PP1的活性5.用Y0代表所有亚基都未被磷酸化的CaMK全酶浓度,Yi代表第i重磷酸化的CaMK全酶浓度, C代表4 CaM复合体的浓度,R代表突触后AMPA受体的总浓度,R1和R2分别表示仅S_845位点被磷酸化和S_845, S_831两位
8、点都被磷酸化了的AMPA受体的浓度. ep代表PSD内有活性PP1的浓度, ep0代表自由的PP1与结合I1P的PP1的浓度之总和,代表自由I1P的浓度,I0代表I1亚基的总浓度.根据化学反应的质量作用定律,他们之间的相互作用生化反应动力学可以用如下的模型描述略.2结果受体通道介导的钙暂态曲线通过对钙信号的表达式进行时间数值积分,在一定频率的输入条件下,我们得到了不同频率突触前刺激引起的突触后钙暂态仿真曲线(Fig 1).Fig 1A和B中幅值最大的两条曲线分别为1 Hz和100 Hz的突触前刺激引起的钙暂态仿真曲线,另外的两条曲线分别反映了不同的NMDA受体通道亚型所介导的钙电流成分.和LT
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- NMDA 依赖 突触 长时程 增强 抑制 模型 仿真 研究
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。