新北师大版七年级数学下册知识点总结(新支点).doc
《新北师大版七年级数学下册知识点总结(新支点).doc》由会员分享,可在线阅读,更多相关《新北师大版七年级数学下册知识点总结(新支点).doc(12页珍藏版)》请在咨信网上搜索。
彭 州 市 新 支 点 学 校 2015—2016学年度七年级下期北师大版数学知识点整理 第一章 整式运算 单项式 整 式 多项式 整 式 的 运 算 同底数幂的乘法 幂的乘方 积的乘方 幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减 单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法 多项式除以单项式 知识点(一)公式应用: 1、 (m,n都是正整数)如________。 拓展运用 如已知=2, =8,求。 解:___________________. 已知=2, =8,求.解:_____________________. 2、 (m,n都是正整数) 如_________________。 拓展应用。 若,则__________。 3、(n是正整数) 拓展运用。 4、(a不为0,m,n都为正整数,且m大于n)。 拓展应用 如若,,则_____________。 5、;,是正整数)。 如 6、平方差公式 a为相同项,b为相反项。 如 7、完全平方公式 逆用: 如 8、应用式: 两位数 10a+b 三位数 100a+10b+c。 9、单项式与多项式相乘:m(a+b+c)=ma+mb+mc。 10、多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb。 11、多项式除以单项式的法则: 12、常用变形: 知识点(二)运算: 1、常见误区: 1、 (); 2、 (); 3、 (); 4、 (); 5、 (); 6、(); 7、 (); 8、 (); 9、(1), (1); 10、 (); 11、 (); 12、 ()。 2 、简便运算: ①公式类 ②平方差公式 ③完全平方公式 第二章 平行线与相交线 余角 余角补角 补角 角 两线相交 对顶角 平行线与相交线 同位角 三线八角 内错角 同旁内角 平行线的判定 平行线 平行线的性质 尺规作图 知识点: 1、 若∠1+∠2=90,则∠1与∠2互余。若∠3+∠4=180,则∠3与∠4互补。 2、 同角的余角相等若∠1+∠2=90,∠2+∠4=90.则∠1=∠4 等角的余角相等若∠1+∠2=90,∠3+∠4=90.∠1=∠3 则 ∠2=∠4 同角的补角相等若∠1+∠2=180,∠2+∠4=180.则∠1=∠4 等角的补角相等若∠1+∠2=180,∠3+∠4=180.∠1=∠3 则 ∠2=∠4 3 、对顶角 (1)、两条直线相交成四个角,其中不相邻的两个角是对顶角。 (2)、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 (3)、对顶角的性质:对顶角相等。 4、同位角、内错角、同旁内角 (1)、两条直线被第三条直线所截,形成了8个角。形成4对同位角,2对内错角,2对同旁内角 (2)、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角。 (3)、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角。 (4)、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角。 5、平行线的判定方法: (1)、同位角相等,两直线平行。 (2)、内错角相等,两直线平行。 (3)、同旁内角互补,两直线平行。 (4)、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。 (简称为:平行于同一直线的两直线平行) (5)、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行 (简称为:垂直于同一直线的两直线平行) 6、尺规作线段和角 (1)、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。 (2)、尺规作图是最基本、最常见的作图方法,通常叫基本作图。 第三章 变量之间的关系 自变量 变量的概念 因变量 变量之间的关系 表格法 关系式法 变量的表达方法 速度时间图象 图象法 路程时间图象 一 、理论理解 1、若Y随X的变化而变化,则X是自变量 Y是因变量。 自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。 自变量 因变量 联系 1、两者都是某一过程中的变量;2、两者因研究的侧重点或先后顺序不同可以互相转化。 区别 先发生变化或自主发生变化的量 后发生变化或随自变量变化而变化的量 2、能确定变量之间的关系式:相关公式 ①路程=速度×时间 ②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2 ④ 本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间 3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x. 二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。 三、关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。 四、图像法(注意):a.认真理解图象的含义,注意选择一个能反映题意的图象; b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、 拐点、交点 八、事物变化趋势的描述: 对事物变化趋势的描述一般有两种: 1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大)); 2. 随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小). 注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等. 九、估计(或者估算) 对事物的估计(或者估算)有三种: 1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等; 2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值; 3.利用关系式:首先求出关系式,然后直接代入求值即可. 第四章 三 角 形 三角形三边关系 三角形 三角形内角和定理 角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质 SSS 三角形 SAS 全等三角形 全等三角形的判定 ASA AAS HL(适用于RtΔ) 全等三角形的应用 利用全等三角形测距离 作三角形 知识点一: 1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。 2、判断三条线段能否组成三角形。 ①a+b>c(a b为最短的两条线段) ②a-b<c (a b为最长的两条线段) 3、第三边取值范围:a-b < c <a+b 如两边分别是5和8 则第三边取值范围为3<x<13. 4、对应周长取值范围 若两边分别为a,b则周长的取值范围是 2a<L<2(a+b) a为较长边。 如两边分别为5和7则周长的取值范围是 14<L<24. 5、三角形中三角的关系 (1)、三角形内角和定理:三角形的三个内角的和等于1800。 n边行内角和公式(n-2) (2)、三角形按内角的大小可分为三类: (1)锐角三角形,即三角形的三个内角都是锐角的三角形; (2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。 (3)钝角三角形,即有一个内角是钝角的三角形。 (3)、判定一个三角形的形状主要看三角形中最大角的度数。 (4)、直角三角形的面积等于两直角边乘积的一半。 6、三角形的三条重要线段 (1)、三角形的角平分线: 1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心) (2)、三角形的中线: 1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 2、三角形有三条中线,它们相交于三角形内一点。(重心) 3、三角形的中线把这个三角形分成面积相等的两个三角形 (3)、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)(3)注意等底等高知识的考试 7、相关命题: 1、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。 2、锐角三角形中最大的锐角的取值范围是60≤X<90 。最大锐角不小于60度。 3、任意一个三角形两角平分线的夹角=90+第三角的一半。 4、钝角三角形有两条高在外部。 5、全等图形的大小(面积、周长)、形状都相同。 6、面积相等的两个三角形不一定是全等图形。 7、能够完全重合的两个图形是全等图形。 8、三角形具有稳定性。 9、三条边分别对应相等的两个三角形全等。 10、三个角对应相等的两个三角形不一定全等。 11、两个等边三角形不一定全等。 12、两角及一边对应相等的两个三角形全等。 13、两边及一角对应相等的两个三角形不一定全等。 14、两边及它们的夹角对应相等的两个三角形全等。 15、两条直角边对应相等的两个直角三角形全等。 16、一条斜边和一直角边对应相等的两个三角形全等。 17、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。 18、一角和一边对应相等的两个直角三角形不一定全等。 19、有一个角是60的等腰三角形是等边三角形。 8、全等图形 1、两个能够重合的图形称为全等图形。 2、全等图形的性质:全等图形的形状和大小都相同。 9、全等三角形 1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。 2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。 10、全等三角形的判定 1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。 3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。 4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。 11、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。 12、利用三角形全等测距离; 13、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。 第五章 生活中的轴对称 轴对称图形 轴对称分类 轴对称 角平分线 轴对称实例 线段的垂直平分线 等腰三角形 等边三角形 生活中的轴对称 轴对称的性质 轴对称的性质 镜面对称的性质 图案设计 轴对称的应用 镶边与剪纸 知识点: 1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。 2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。可以说成:这两个图形关于某条直线对称。 3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。 联系:它们都是图形沿某直线折叠可以相互重合。 2、成轴对称的两个图形一定全等。 3、全等的两个图形不一定成轴对称。 4、对称轴是直线。 5、角平分线的性质: 1、角平分线所在的直线是该角的对称轴。 2、性质:角平分线上的点到这个角的两边的距离相等。 6、线段的垂直平分线 1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。 2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。 7、轴对称图形有: 等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。 A 8、等腰三角形性质: C E ①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。 9、①“等角对等边” ∵∠B=∠C ∴AB=AC O A ②“等边对等角” ∵ AB =AC ∴∠B=∠C 10、角平分线性质: C B F D 角平分线上的点到角两边的距离相等。 ∵OA平分∠CAD OE⊥AC,OF⊥AD ∴OE=OF 11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等 。 ∵OC垂直平分AB ∴AC=BC C 12、轴对称的性质 1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。 2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。 3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。 13、镜面对称 1.当物体正对镜面摆放时,镜面会改变它的左右方向; 2.当垂直于镜面摆放时,镜面会改变它的上下方向; 3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样; 学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法: (1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质; (3)可以把数字左右颠倒,或做简单的轴对称图形; (4)可以看像的背面; (5)根据前面的结论在头脑中想象。 第六章 概 率 必然事件 事件 不可能事件 不确定事件 概率 等可能性 游戏的公平性 概率的定义 概率 几何概率 设计概率模型 知识点: 一、事件: 1、事件分为必然事件、不可能事件、不确定事件。 2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。 3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。 4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。 二、等可能性:是指几种事件发生的可能性相等。 1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不可能事件发生的概率为0,记作P(不可能事件)=0; 4、不确定事件发生的概率在0—1之间,记作0<P(不确定事件)<1。 5、概率的计算:(1)直接数数法:即直接数出所有可能出现的结果的总数n,再数出事件A可能出现的结果数m,利用概率公式直接得出事件A的概率。(2)对于较复杂的 题目,我们可采用“列表法”或画“树状图法”。 四、几何概率 1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。 2、求几何概率:(1)首先分析事件所占的面积与总面积的关系; (2)然后计算出各部分的面积; (3)最后代入公式求出几何概率。 12- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 七年 级数 下册 知识点 总结 支点
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文