初三数学旋转综合题.doc
《初三数学旋转综合题.doc》由会员分享,可在线阅读,更多相关《初三数学旋转综合题.doc(5页珍藏版)》请在咨信网上搜索。
金太阳尖端教育培训,中考高考一站式服务。0718--8021814 图形旋转练习题 第七周 1. 如图1,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,求∠APB的度数。 2. 如图P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1,PB=2,PC=3。求此正方形ABCD面积。 3.设点E、F分别在正方形ABCD的边BC、CD上滑动且保持∠EAF=450, AP⊥EF于点P (1) 求证:AP=AB,(2)若AB=5,求ΔECF的周长。 4.如图17,正方形ABCD,E、F分别为BC、CD边上一点. (1)若∠EAF=45º.求证:EF=BE+DF. (2)若⊿AEF绕A点旋转,保持∠EAF=45º,问⊿CEF的周长是否随⊿AEF位置的变化而变化? 图17 (3)已知正方形ABCD的边长为1,如果⊿CEF的周长为2.求∠EAF的度数. 5.如图,等腰直角△ABC中,∠ABC=90°,点D在AC上,将△ABD绕顶点B沿顺时针方向旋转90°后得到△CBE. ⑴求∠DCE的度数; ⑵当AB=4,AD∶DC=1∶3时,求DE的长. 6. (1)如图①所示,P是等边△ABC内的一点,连结PA、PB、PC,将△BAP绕B点顺时针旋转60°得△BCQ,连结PQ.若PA2+PB2=PC2,证明∠PQC=90°. A B C P Q 第6题图②① (2) 如图②所示,P是等腰直角△ABC(∠ABC=90°)内的一点,连结PA、PB、PC,将△BAP绕B点顺时针旋转90°得△BCQ,连结PQ.当PA、PB、PC满足什么条件时,∠PQC=90°?请说明理由. Q C P A B 第6题图① 7.阅读下面材料,并解决问题: (1)如图,等边△ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5则∠APB=__________,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌__________这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数. (2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(11),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2 . 8. (1)如图1,△ABC中,∠BAC=90°,AB=AC,D、E在BC上,∠DAE=45°,为了探究BD、DE、CE之间的等量关系,现将△AEC绕A顺时针旋转90°后成△AFB,连接DF,经探究,你所得到的BD、DE、CE之间的等量关系式是 . (2)如图2,在△ABC中,∠BAC=120°,AB=AC,D、E在BC上,∠DAE=60°、∠ADE=45°,试仿照(1)的方法,利用图形的旋转变换,探究BD、DE、CE之间的等量关系,并证明你的结论. 9.操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究: (1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由. B 图2 A E11 C D11 O F (2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由. 10.把两个三角形按如图1放置,其中,,,且,.把△DCE绕点C顺时针旋转15°得到△D1CE1,如图2,这时AB与CD1相交于点,与D1E1相交于点F. (1)求的度数; (2)求线段AD1的长; (3)若把△D1CE1绕点顺时针再旋转30°得到△D2CE2,这时点B在△D2CE2的内部、外部、还是边上?请说明理由. 11.如图,在等腰Rt△ABC与等腰Rt△DBE中, ∠BDE=∠ACB=90°,且BE在AB边上,取AE的中点F,CD的中点G,连结GF. (1)FG与DC的位置关系是 ,FG与DC的数量关系是 ; B D A F E G C B A C (2)若将△BDE绕B点逆时针旋转180°,其它条件不变,请完成下图,并判断(1)中的结论是否仍然成立? 请证明你的结论. 解:(1)FG⊥CD ,FG=CD. (2)延长ED交AC的延长线于M,连接FC、FD、FM.∴四边形 BCMD是矩形. ∴CM=BD. 又△ABC和△BDE都是等腰直角三角形.∴ED=BD=CM.∵∠E=∠A=45º∴△AEM是等腰直角三角形.又F是AE的中点.∴MF⊥AE,EF=MF,∠E=∠FMC=45º.∴△EFD≌△MFC.∴FD=FC,∠EFD=∠MFC.又∠EFD+∠DFM=90º∴∠MFC+∠DFM=90º即△CDF是等腰直角三角形.又G是CD的中点.∴FG=CD,FG⊥CD. 12.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN. (1)探究:线段BM、MN、NC之间的关系,并加以证明. (2)若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图②中画出图形,并说明理由. 解:(1)由图①可猜想PD=PE,再在图②中构造全等三角形来说明.即PD=PE. 理由如下: 连接PC,因为△ABC是等腰直角三角形,P是AB的中点, ∴CP=PB,CP⊥AB,∠ACP= ∠ACB=45°. ∴∠ACP=∠B=45°. 又∠DPC+∠CPE=∠BPE+∠CPE, ∴∠DPC=∠BPE. ∴△PCD≌△PBE. ∴PD=PE. (2)△PBE是等腰三角形, ①当PE=PB时,此时点C与点E重合,CE=0; ②当PB=BE时,1)E在线段BC上, ,2)E在CB的延长线上, ; ③当PE=BE时,CE=1. 解:(1)线段BD、DE、CE之间的等量关系式是:BD2+CE2=DE2; 理由:∵△ABC中,∠BAC=90°,AB=AC, ∴∠ABD=∠ACE=45°,由旋转的性质可知,△AEC≌△AFB, ∴∠ABF=∠ACE=45°,FB=CE ∴∠FBD=∠ABF+∠ABD=90°旋转角∠FAE=90°,又∠DAE=45°, 故∠FAD=∠FAE-∠DAE=45°, 易证△AFD≌△AED,故FD=DE, 在Rt△FBD中,由勾股定理得:BD2+BF2=DF2; 即:BD2+CE2=DE2. (2)仿照(1)可证,△AEC≌△AFB, 故BF=CE,△AFD≌△AED,故FD=DE, ∵∠ADE=45°, ∴∠ADF=45°,故∠BDF=90°, 在Rt△BDF中,由勾股定理,得BF2=BD2+DF2, ∴CE2=BD2+DE2. 图② (1)解:BM+CN=MN 证明:如图,延长AC至M1,使CM1=BM,连结DM1 由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°∴∠ABD=∠ACD=90° ∵BD=CD ∴Rt△BDM≌Rt△CDM1 ∴∠MDB=∠M1DC DM=DM1 ∴∠MDM1=(120°-∠MDB)+∠M1DC=120° 又∵∠MDN=60° ∴∠M1DN=∠MDN=60° ∴△MDN≌△M1DN ∴MN=NM1=NC+CM1=NC+MB (2) CN-BM=MN 证明:如图,在CN上截取,使CM1=BM,连结DM1 ∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°∴∠DBM=∠DCM1=90°∵BD=CD∴Rt△BDM≌Rt△CDM1 ∴∠MDB=∠M1DC DM=DM1 ∵∠BDM+∠BDN=60°∴∠CDM1+∠BDN=60°∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60° ∴∠M1DN=∠MDN ∵AD=AD∴△MDN≌△M1DN ∴MN=NM1=NC-CM1=NC-MB 密 封 线 内 不 能 答 题 掌握解题方法与解题技巧,学会举一反三,兴趣是前提,方法是王道,学好玩好才是本事- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初三 数学 旋转 综合
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文