指对幂函数-教案.doc
《指对幂函数-教案.doc》由会员分享,可在线阅读,更多相关《指对幂函数-教案.doc(19页珍藏版)》请在咨信网上搜索。
1、(完整word)指对幂函数-教案燕园思达教育教案2012 高中数学高一-1人User指数函数指数函数的图象与性质yaxa10a1图象定义域R值域(0,)性质过定点(0,1)值域x0时,0y1当x0时,y1x0时,y1.当x0时,0y1单调性在(,)上是增函数在(,)上是减函数a变化对图象的影响在第一象限内,从逆时针方向看图象,a逐渐增大;在第二象限内,从逆时针方向看图象,a逐渐减小.常用公式arasars(a0,r、sQ)(ar)sars(a0,r、sQ)(ab)rarbr(a0,b0,rQ)指数函数一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通
2、常利用分数指数幂进行根式的化简运算两个防范(1)指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按:0a1和a1进行分类讨论(2)换元时注意换元后“新元的范围三个关键点画指数函数yax(a0,且a1)的图象,应抓住三个关键点:(1,a),(0,1),.双基自测1(2011山东)若点(a,9)在函数y3x的图象上,则tan的值为() A0 B. C1 D.解析由题意有3a9,则a2,tan tan 。答案D2(2012郴州五校联考)函数f(x)2|x1|的图象是()解析f(x)故选B.答案B3若函数f(x),则该函数在(,)上是()A单调递减无最小值 B单调递减有最小值C单调递增无
3、最大值 D单调递增有最大值解析设yf(x),t2x1,则y,t2x1,x(,)t2x1在(,)上递增,值域为(1,)因此y在(1,)上递减,值域为(0,1)答案A4(2011天津)已知a5,b5,c,则()Aabc BbacCacb Dcab解析c55,log23.4log221,log43。6log441,log3log331,又log23.4log2log3 ,log2 3。4log3 log4 3。6又y5x是增函数,acb。答案C5(2012天津一中月考)已知aa3,则aa1_;a2a2_.解析由已知条件(aa)29。整理得:aa17又(aa1)249,因此a2a247。答案747考向
4、一指数函数的性质【例2】已知函数f(x)x3(a0且a1)(1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)求a的取值范围,使f(x)0在定义域上恒成立审题视点 对解析式较复杂的函数判断其奇偶性要适当变形;恒成立问题可通过求最值解决解(1)由于ax10,且ax1,所以x0.函数f(x)的定义域为x|xR,且x0(2)对于定义域内任意x,有f(x)(x)3 (x)3(x)3 x3f(x),f(x)是偶函数(3)当a1时,f(x).对x0,由指数函数的性质知ax1,ax10,ax10。又x0时,x30,0,即当x0时,f(x)0.又由(2)知f(x)为偶函数,即f(x)f(x),
5、则当x0时,x0,有f(x)f(x)0成立综上可知,当a1时,f(x)0在定义域上恒成立当0a1时,f(x)。当x0时,1ax0,ax10,ax10,x30,此时f(x)0,不满足题意;当x0时,x0,f(x)f(x)0,也不满足题意综上可知,所求a的取值范围是a1. (1)判断此类函数的奇偶性,常需要对所给式子变形,以达到所需要的形式,另外,还可利用f(x)f(x),来判断(2)将不等式恒成立问题转化为求函数值域问题,是解决恒成立问题的常用方法【训练2】 设f(x)是定义在R上的函数(1)f(x)可能是奇函数吗?(2)若f(x)是偶函数,试研究其在(0,)的单调性解(1)假设f(x)是奇函数
6、,由于定义域为R,f(x)f(x),即,整理得(exex)0,即a0,即a210显然无解f(x)不可能是奇函数(2)因为f(x)是偶函数,所以f(x)f(x),即,整理得(exex)0,又对任意xR都成立,有a0,得a1.当a1时,f(x)exex,以下讨论其单调性,任取x1,x2(0,)且x1x2,则f(x1)f(x2)计算过程很简单0,即f(x1)f(x2),当a1时,函数f(x)在(0,)为增函数,同理,当a1时,f(x)在(0,)为减函数考向二指数函数图象的应用【例3】(2009山东)函数y的图象大致为()审题视点 函数图象的判断要充分利用函数的性质,如奇偶性、单调性解析y(化简可得)
7、1,当x0时,e2x10且随着x的增大而增大,故y11且随着x的增大而减小,即函数y在(0,)上恒大于1且单调递减,又函数y是奇函数,故选A.答案A 利用指数函数的图象和性质可研究复合函数的图象和性质,比如:函数y,y,ylg(10x1)等【训练3】 已知方程10x10x,lg xx10的实数解分别为和,则的值是_解析作函数yf(x)10x,yg(x)lg x,yh(x)10x的图象如图所示,由于yf(x)与yg(x)互为反函数,它们的图象是关于直线yx对称的又直线yh(x)与yx垂直,yf(x)与yh(x)的交点A和yg(x)与yh(x)的交点B是关于直线yx对称的而yx与yh(x)的交点为
8、(5,5)又方程10x10x的解为A点横坐标,同理,为B点横坐标5,即10.答案10基础梳理2对数函数的图象与性质ylogaxa10a1图象性质定义域:(0,)值域:R过点(1,0)当x1时,y0当0x1,y0当x1时,y0当0x1时,y0是(0,)上的增函数是(0,)上的减函数a变化对图象的影响a1,从逆时针方向看图象,a逐渐减小;0a1,从逆时针方向看图象,a逐渐增大。常用公式换底公式:logbN(a,b均大于零且不等于1);倒数公式:logab,推广logablogbclogcdlogad。如果a0且a1,M0,N0,那么loga(MN)logaMlogaN;logalogaMlogaN
9、;logaMnnlogaM(nR); log amMnlogaM。 一种思想对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明两个防范解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围三个关键点画对数函数的图象应抓住三个关键点:(a,1),(1,0),.四种方法对数值的大小比较方法(1)化同底后利用函数的单调性(2)作差或作商法(3)利用中间量(0或1)(4)化同真数后利用图象比较双基自测1(2010四川)2 log510log50。25()A0 B1 C2 D4解析原式log5100log50。25log5252.
10、答案C2(人教A版教材习题改编)已知alog0。70.8,blog1。10。9,c1.10。9,则a,b,c的大小关系是()Aabc BacbCbac Dcab解析将三个数都和中间量1相比较:0alog0.70.81,blog1。10。90,c1。10.91。答案C3(2012黄冈中学月考)函数f(x)log2(3x1)的值域为()A(0,) B0,)C(1,) D1,)解析设yf(x),t3x1。则ylog2t,t3x1,xR.由ylog2t,t1知函数f(x)的值域为(0,)答案A4(2012汕尾模拟)下列区间中,函数f(x)ln(2x)|在其上为增函数的是()A(,1 B。C。 D1,2
11、)解析法一当2x1,即x1时,f(x)ln(2x)ln(2x),此时函数f(x)在(,1上单调递减当02x1,即1x2时,f(x)ln(2x)|ln(2x),此时函数f(x)在1,2)上单调递增,故选D。法二f(x)|ln(2x)|的图象如图所示由图象可得,函数f(x)在区间1,2)上为增函数,故选D.答案D5若loga1,则a的取值范围是_答案考向一对数式的化简与求值【例1】求值:(1);(2)(lg 5)2lg 50lg 2;(3)lg lg lg 。审题视点 运用对数运算法则及换底公式解(1)原式。(2)原式(lg 5)2lg(105)lg (lg 5)2(1lg 5)(1lg 5)(l
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 教案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。