基于MATLAB的SVR回归模型的设计与实现.doc
《基于MATLAB的SVR回归模型的设计与实现.doc》由会员分享,可在线阅读,更多相关《基于MATLAB的SVR回归模型的设计与实现.doc(41页珍藏版)》请在咨信网上搜索。
1、(完整word)基于MATLAB的SVR回归模型的设计与实现基于MATLAB的SVR回归模型的设计与实现The Design and Implementation of SVR Regression Model Based on MATLAB学生姓名:王新蕾学生学号:10780232专业名称:电子信息科学与技术指导教师:张艳(讲师)计算机与信息工程学院2014年6月10日独创性声明本人声明所呈交的毕业论文是本人在指导教师指导下进行的研究工作和取得的研究成果,除了文中特别加以引用标注之处外,论文中不包含其他人已经发表或撰写过的研究成果,没有伪造数据的行为。毕业论文作者签名: 签字日期: 毕业论文
2、版权使用授权书本毕业论文作者完全了解学校有关保留、使用论文的规定。同意学校保留并向有关管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅.本人授权天津城建大学可以将本论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本论文。(保密的毕业论文在解密后适用本授权说明)毕业论文作者签名: 指导教师签名:签字日期: 签字日期: 摘 要 支持向量机是根据统计学习理论提出的一种新的学习方法,近年来受到了国内外学术界的广泛重视,并已在模式识别和函数估计中得到广泛应用。支持向量机理论的最大特点是由有限的训练集样本得到的小的误差保证对独立的测试集仍保持小的误差。从而
3、通过支持向量机(SVM)理论,可以建立支持向量回归(SVR)预测模型,以解决各种实际问题。SVR算法是模式识别中应用比较广泛的算法模型之一,它是支持向量机在函数逼近和回归估计中的应用。在SVR回归分析中,使用支持向量机可以使回归函数尽量平滑,其泛化能力强。本文论述了支持向量回归的基本原理和思想,介绍了支持向量回归算法以及所用到的几种常见的核函数(即线性内核、多项式内核、径向基函数内核、高斯内核)。本设计主要实现的功能有:数据集的创建、内核函数的选取、参数的设置、训练集的回归、数据集的保存与打开.通过不同核函数的选取以及相应参数的设置对输入数据集进行回归。此模型主要解决非线性回归模型的预测。通过
4、实验改变各个参数的不同取值对训练集进行回归,并分别统计出支持向量的个数,回归性能,程序运行时间。最后对回归的结果进行分析,得出各参数对回归性能的影响。关键词:支持向量回归; 训练算法; 核函数; 线性判别ABSTRACTSupport vector machine (SVM) is a new method of study based on statistical learning theory which has attracted extensive attentions by academic circles both at home and abroad in recent year
5、s。 It has been widely used in pattern recognition and function estimation。 The biggest characteristic of support vector machine (SVM) theory is that a small error limited by the training set of sample can ensure the independent test sets small error. Thus a support vector regression (SVR) forecastin
6、g model can be built by support vector machine (SVM) theory and it can solve various practical problems。SVR algorithm model is one of pattern recognition algorithm, which is more widely used in approximation of function and the application of the regression estimate. In the SVR regression analysis,
7、using support vector machine (SVM) can smooth regression function as far as possible. Its generalization ability is strong.This paper discusses the basic principle of support vector regression and introduces support vector regression algorithm and several common kernel functions (the linear kernel,
8、polynomial kernel and radial basis function (RBF) kernel, the Gaussian kernel etc.)。 This essay successfully makes these functions work: the creation of data sets, the selection of kernel function, parameter settings, return of the training set, the preservation and open of the data set. We accompli
9、sh the return of input of data set through the selection of different kernel functions and the setting of corresponding parameter。 This model is mainly to solve the nonlinear regression model prediction. Then, the same issue is done through the experiment to change the values of different parameters
10、, and the statistics, the number of support vector regression, performance of program running time are accounted. Finally, we have analysis the results of regression and gained the influence of various parameters on the return performance。Key words: Support Vector Regression; Training Algorithms; Ke
11、rnel Function; Linear Discrimination Analysis目 录第1章 绪论11。1 课题研究背景11。2 国内外研究现状11.3 课题研究目的21.4 课题研究使用的开发工具31。5论文组织结构3第2章 支持向量机回归原理52.1 支持向量机52.2 支持向量回归52.2.1 回归初步形式52。2.2 线性支持向量回归62.2.3 非线性支持向量回归62。3支持向量回归核函数72。4 支持向量回归算法82.4.1 支持向量回归的算法的基础82。4.2 回归算法102。4.3 关于算法的几点说明11第3章 基于Matlab实现SVR的总体设计133。1 总体设计
12、思想133。2 功能模块的划分及相关流程图133.2。1 主要功能模块的划分133。2.2 实现程序的主要框架图133。2。3 支持向量回归模型的流程图14第4章 基于支持向量回归模型的实现164.1模型的功能描述164.2 运行结果174.2.1 主界面174。2.2 功能描述界面174。2.3运行过程及结果184。2。4 命令窗口的显示结果244。 3系统的性能分析及结论24第5章 总结27致 谢28参考文献29第1章 绪论支持向量机(SVM)是在统计学习理论基础上提出的一种新的学习方法。支持向量机( SVM )是一种比较好的实现了结构风险最小化思想的方法。它的优点是理论完备、训练时间短、
13、全局优化强、适应性好、泛化性能好等。SVM已经成为目前国内外研究的热点。本课题研究的SVR是支持向量机在函数回归中的应用.1.1 课题研究背景基于支持向量的学习是现代智能技术中的重要方面,研究从观测数据(样本)出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。包括模式识别、神经网络等在内,现有支持向量机器学习方法共同的重要理论基础之一是统计学.传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意.与传统统计学相比,统计学习理论(Statistical Learnin
14、g Theory或SLT)是一种专门研究小样本情况下机器学习规律的理论.V。 Vapnik等人从六、七十年代开始致力于此方面研究,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视.统计学习理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将很多现有方法纳入其中,有望帮助解决许多原来难以解决的问题(比如神经网络结构选择问题、局部极小点问题等);同时,在这一理论基础上发展了一种新的通用学习方法支持向量机(Support Vector Machine或SVM),它已初步表现出很多优于
15、已有方法的性能。通过结果风险最小化准则和核函数方法,较好地解决了模式分类器复杂性核推广性之间的矛盾,引起了模式识别领域学者的极大关注.从此迅速的发展起来,现在已经在许多领域(生物信息学,文本分类、手写体识别、人脸检测等) 都取得了成功的应用,并且在研究过程中,取得了与传统方法可比或更好的结果,还丰富了自身的内容(如快速训练算法等),从而更加推动了它在其他模式识别领域的应用。由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点,在模式识别、回归估计、函数逼近等领域有了广泛的应用.本课题就是研究它在回归估计中的应用。1。2 国内外研究现状支持向量机一经提出,就得到国内外学者的高度关注。虽
16、然支持向量机发展时间很短,但是由于它的产生是基于统计学习理论的,因此具有坚实的理论基础。近几年涌现出的大量令人瞩目的理论研究成果,更为其应用研究奠定了坚实基础。如Anthony et al。(1999)等人给出了关于硬邻域支持向量机学习误差的严格理论界限,ShaweTaylor(2000)和Cristianini (2000)也给出了类似的关于软邻域支持向量机和回归情况下的误差界限;Weston et al.(1998)和Vapnik(1995,1998)等研究了支持向量机的泛化性能及其在多值分类和回归问题的扩展问题;Smola(1998)和Schoelkopf(1999)提出了支持向量机一般
17、意义下的损失函数数学描述;脊回归是由Tikhonov 提出的一种具有特殊形式的正则化网络,Girosi(1990)、Poggio(1975)等将其应用到正则化网络的学习中, Smola et al.(1999)研究了状态空间中脊回归的应用,Girosi(1990)、Smola(1998)、Schoelkopf(1999)等讨论了正则化网络和支持向量机的关系。随着支持向量机理论上深入研究,出现了许多变种支持向量机,如Smolaetal.(1999)提出的用于分类和回归支持向量机.另外,一些学者还扩展了支持向量机概念,如Mangasarian(1997)等人的通用支持向量机(Generalised
18、SVMs)。虽然SVM 方法在理论上具有很突出的优势, 但与其理论研究相比,应用研究尚相对比较滞后, 到目前,SVM已用于数据分类、回归估计、函数逼近等领域.应用最为广泛的当属模式识别领域,在模式识别方面最突出的应用研究是贝尔实验室对美国邮政手写数字库进行的实验,这是一个可识别性较差的数据库, 人工识别平均错误率是2.5% , 用决策树方法识别错误率是16.2% , 两层神经网络中错误率最小的是5。9 , 专门针对该特定问题设计的五层神经网络错误率为5。0 (其中利用了大量先验知识) , 而用三种SVM 方法得到的错误率分别为4。0、4.1 和4.2 , 且其中直接采用了1616的字符点阵作为
19、SVM 的输入, 并没有进行专门的特征提取.说明了SVM方法较传统方法有明显的优势, 同时也得到了不同的SVM 方法可以得到性能相近的结果。实验还观察到,三种SVM求出的支持向量中有80%以上是重合的,它们都只是总样本中很少的一部分,说明支持向量本身对不同方法具有一定的不敏感性(遗憾的是这些结论仅仅是有限的实验中观察到的现象,如果能得到证明,将会使SVM的理论和应用有更大的突破)。围绕这一字符识别实验,还提出了一些对SVM的改进,比如引入关于不变性的知识、识别和去除样本集中的野值、通过样本集预处理提高识别速度等,相关的应用还包括SVM与神经网络相结合对笔迹进行在线适应。除此之外,MIT用SVM
20、进行的人脸检测实验也取得了较好的效果,可以较好地学会在图像中找出可能的人脸位置.其它有报道的实验领域还包括文本识别、人脸识别、三维物体识别、遥感图像分析等,在函数回归估计方面主要用于非线性系统识别问题、时间序列预测、机场游客吞吐量的预测问题及多维自由曲面的重建问题等。1。3 课题研究目的此课题的设计目的在于训练及提高自己能综合运用所学专业知识分析、解决实际问题的能力;掌握文献检索、资料查询的基本方法以及获取新知识的能力;系统的利用支持向量回归相关理论知识和编程技能,利用MATLAB开发平台和相关的统计学工具箱及支持向量回归算法,设计改进并实现基于MATLAB的SVR回归模型的实验系统,通过运用
21、M文件编写回归算法、GUI组件编写主界面、编写程序和装载数据文件完成实验界面的各个功能.从而熟悉了MATLAB编程、GUI组件编写用户界面以及回归算法的程序实现,同时也了解了支持向量回归算法在实际问题预测模型中的应用。1.4 课题研究使用的开发工具此课题主要运用MATLAB开发平台,MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台.它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。本课题研究用MATLAB程序编写回归算法和GUI组件编写用
22、户界面来实现支持向量回归模型的设计。开发工具的优点:1编程效率高:Matlab是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,这样就更接近我们书写计算算法公式的思维方式。Matlab语言是一种解释执行的语言,与其他语言相比,它把编辑,编译,连接和执行融为一体,提高了程序的运行速度,同时也便于修改和调试。2高效方便的矩阵和数组运算:在回归过程中,输入的数据集,运算的变量以及很多参数都是以数组,向量形式出现的,运算这些数据复杂,易出错而且费时,所以方便高效的数组向量运算就显得尤为重要,而Matlab恰好具有这样便利的功能。并且Matlab语言还像其他语言一样规定了矩阵的算术运算
23、符,关系运算符,逻辑运算符,条件运算符及赋值运算符。这给编写程序带来很大方便。在支持向量回归算法中包含了大量的数学模型和复杂的运算公式,所以用Matlab语言进行代码编写比较简单,编程效率比较高。3方便的绘图功能:本课题借助于Matlab的绘图功能,能较为方便的建立支持向量回归过程中的演示图形。Matlab有一系列绘图函数命令,功能强大,使用方便.在执行绘图函数时是通过使用不同的图形对象来实现图形创建功能的这些图形对象包括直线、文本、曲面等等。Matlab创建一个图形对象时总会给该对象制定一个独一无二的标识符,这个标识符就称为句柄。通过使用句柄,用户可以方便地访问句柄所指定的对象,通过修改对象
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB SVR 回归 模型 设计 实现
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。