新版初一数学导学案全册.doc
《新版初一数学导学案全册.doc》由会员分享,可在线阅读,更多相关《新版初一数学导学案全册.doc(9页珍藏版)》请在咨信网上搜索。
个人收集整理 勿做商业用途 课题:1.3.1有理数的加法(1) 【学习目标】: 1、理解有理数加法意义,掌握有理数加法法则,会正确进行有理数加法运算; 2、会利用有理数加法运算解决简单的实际问题; 【学习重点】:有理数加法法则 【学习难点】:异号两数相加 【导学指导】 一、知识链接 1、正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围。例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。如果,红队进4个球,失2个球;蓝队进1个球,失1个球。 于是红队的净胜球数为 4+(-2), 蓝队的净胜球数为 1+(-1)。 这里用到正数和负数的加法.那么,怎样计算4+(-2) 下面我们一起借助数轴来讨论有理数的加法. 二、自主探究 1、借助数轴来讨论有理数的加法 1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了 米,这个问题用算式表示就是: 2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走多少米?很明显,两次共向西走了 米. 这个问题用算式表示就是: 如图所示: 3) 如果向西走2米,再向东走4米, 那么两次运动后,这个人从起点向东走了 米,写成算式就是 这个问题用数轴表示如下图所示: 4)利用数轴,求以下情况时这个人两次运动的结果: ①先向东走3米,再向西走5米,这个人从起点向( )走了( )米; ②先向东走5米,再向西走5米,这个人从起点向( )走了( )米; ③先向西走5米,再向东走5米,这个人从起点向( )走了( )米。 写出这三种情况运动结果的算式 5)如果这个人第一秒向东(或向西)走5米,第二秒原地不动,两秒后这个人从起点向东(或向西)运动了 米。写成算式就是 2、师生归纳两个有理数相加的几种情况。 3.你能从以上几个算式中发现有理数加法的运算法则吗? 有理数加法法则 (1)同号的两数相加,取 的符号,并把 相加。 (2)绝对值不相等的异号两数相加,取 的加数的符号,并用较大的绝对值 较小的绝对值。 互为相反数的两个数相加得 ; (3)一个数同0相加,仍得 。 4。新知应用 例1 计算(自己动动手吧!) (1) (-3)+(-9); (2) (-4。7)+3.9。 例2 (自己独立完成) 【课堂练习】: 1.填空:(口答) (1)7+(-7)= ; (2)3+(-8)= ; (3)(-4)+(-6)= ;(4)(-9)+1 = ; (5)(-6)+0 = ; (6)0+(-3) = ; 2. 课本P18第1、2题 【要点归纳】: 有理数加法法则: 【拓展训练】: 1.判断题: (1)两个负数的和一定是负数; (2)绝对值相等的两个数的和等于零; (3)若两个有理数相加时的和为负数,这两个有理数一定都是负数; (4)若两个有理数相加时的和为正数,这两个有理数一定都是正数。 2.已知│a│= 8,│b│= 2; (1)当a、b同号时,求a+b的值; (2)当a、b异号时,求a+b的值。 【总结反思】: 课题:1。3.1有理数的加法(2) 【学习目标】:掌握加法运算律并能运用加法运算律简化运算; 【重点难点】:灵活运用加法运算律简化运算; 【导学指导】 一、温故知新 1、想一想,小学里我们学过的加法运算定律有哪些?先说说,再用字母表示写在下面: 、 2、计算 ⑴ 30 +(-20)= (-20)+30= ⑵ [ 8 +(-5)] +(-4)= 8 + [(-5)]+(-4)]= 思考:观察上面的式子与计算结果,你有什么发现? 二、自主探究 1、请说说你发现的规律 2、自己换几个数字验证一下,还有上面的规律吗 3、由上可以知道,小学学习的加法交换律、结合律在有理数范围内同样适应, 即:两个数相加,交换加数的位置,和 。式子表示为 三个数相加,先把前两个数相加,或者先把后两个数相加,和 用式子表示为 想想看,式子中的字母可以是哪些数? 例1 计算: 1)16 +(-25)+ 24 +(-35) 2)(—2。48)+(+4。33)+(—7。52)+(—4.33) 例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下: 91 91 91.5 89 91。2 91.3 88。7 88.8 91.8 91。1 10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克? 想一想,你会怎样计算,再把自己的想法与同伴交流一下。 【课堂练习】 课本P20页练习 1、2 【要点归纳】: 你会用加法交换律、结合律简化运算了吗? 【拓展训练】 1.计算: (1)(-7)+ 11 + 3 +(-2); (2) 2.绝对值不大于10的整数有 个,它们的和是 。 3、填空: (1)若a>0,b>0,那么a+b 0. (2)若a<0,b<0,那么a+b 0. (3)若a>0,b<0,且│a│>│b│那么a+b 0. (4)若a<0,b>0,且│a│>│b│那么a+b 0. 3.某储蓄所在某日内做了7件工作,取出950元,存入5000元,取出800元,存入12000元,取出10000元,取出2000元。问这个储蓄所这一天,共增加多少元? 4、课本P20实验与探究 【总结反思】: 课题:1.3.2有理数的减法(1) 【学习目标】: 1、经历探索有理数减法法则的过程。理解并掌握有理数减法法则; 2、会正确进行有理数减法运算; 3、体验把减法转化为加法的转化思想; 【重点难点】:有理数减法法则和运算 【导学指导】 一、知识链接 1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢? 试试看,计算的算式应该是 .能算出来吗,画草图试试 2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C)显然,这天的温差是3―(―2); 想想看,温差到底是多少呢?那么,3―(―2)= ; 二、自主探究 1、还记得吗,被减数、减数差之间的关系是:被减数—减数= ; 差+减数= 。 2、请你与同桌伙伴一起探究、交流: 要计算3―(―2)=?,实际上也就是要求:?+(—2)=3,所以这个数(差)应该是 ;也就是3―(―2)=5; 再看看,3+2= ;所以3―(―2) 3+2; 由上你有什么发现?请写出来 . 3、换两个式子计算一下,看看上面的结论还成立吗? —1—(—3)= , —1+3= , 所以—1—(—3) -1+3; 0-(-3)= , 0+3= , 所以0—(-3) 0+3; 4、师生归纳 1)法则: 2)字母表示: 三、新知应用 1、例题 1. 计算: (1) (-3)―(―5); (2)0-7; (3) 7。2―(―4。8); (4)-3; 请同学们先尝试解决 【课堂练习】课本 P23 1。2 【要点归纳】: 有理数减法法则: 【拓展训练】 1、计算: (1)(-37)-(-47); (2)(-53)-16; (3)(-210)-87; (4)1。3-(-2。7); (5)(-2)-(-1); 2.分别求出数轴上下列两点间的距离: (1)表示数8的点与表示数3的点; (2)表示数-2的点与表示数-3的点; 【总结反思】: 课题:1.3。2 有理数的减法(2) 【学习目标】: 1、理解加减法统一成加法运算的意义; 2、会将有理数的加减混合运算转化为有理数的加法运算; 【重点难点】:有理数加减法统一成加法运算; 【导学指导】 一、知识链接 1、一架飞机作特技表演,起飞后的高度变化如下表: 高度的变化 上升4.5千米 下降3。2千米 上升1.1千米 下降1.4千米 记作 +4.5千米 -3.2千米 +1.1千米 -1.4千米 请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米。 2、你是怎么算出来的,方法是 二、自主探究 1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧! 2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导。 3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写 如:(-20)+(+3)-(-5)-(+7) 有加法也有减法 =(-20)+(+3)+(+5)+(-7) 先把减法转化为加法 = -20+3+5-7 再把加号记在脑子里,省略不写 可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”. 4、师生完整写出解题过程 5、补充例题:计算-4.4-(-4)-(+2)+(-2)+12.4; 【课堂练习】 计算:(课本P24练习) (1)1—4+3—0.5; (2)-2。4+3。5-4。6+3.5 ; (3)(-7)-(+5)+(—4)—(-10); (4); 【要点归纳】: 【拓展训练】: 1、计算: (1)27—18+(—7)—32 (2) 【总结反思】: 课题:1。4.1有理数的乘法(1) 【学习目标】: 1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算; 2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力; 【重点难点】:有理数乘法法则 【导学指导】 一、温故知新 1。有理数加法法则内容是什么? 2.计算 (1)2+2+2= (2)(-2)+(—2)+(-2)= 3.你能将上面两个算式写成乘法算式吗? 二、自主探究 1、自学课本28—29页回答下列问题 (1)如果它以每分2cm的速度向右爬行,3分钟后它在什么位置? 可以表示为 。 ( 2)如果它以每分2cm的速度向左爬行,3分钟后它在什么位置? 可以表示为 (3) 如果它以每分2cm的速度向右爬行,3分钟前它在什么位置? 可以表示为 (4)如果它以每分2cm的速度向左爬行,3分钟前它在什么位置? 可以表示为 由上可知: (1) 2×3 = ; (2)(-2)×3 = ; (3)(+2)×(-3)= ; (4)(-2)×(-3)= ; (5)两个数相乘,一个数是0时,结果为0 观察上面的式子, 你有什么发现?能说出有理数乘法法则吗? 归纳有理数乘法法则 两数相乘,同号 ,异号 ,并把 相乘. 任何数与0相乘,都得 . 2、直接说出下列两数相乘所得积的符号 1)5×(—3) ; 2)(—4)×6 ; 3)(—7)×(—9); 4)0。9×8 ; 3、请同学们自己完成 例1 计算:(1)(-3)×9; (2)(-)×(—2); 归纳: 的两个数互为倒数。 例2 【课堂练习】 课本30页练习1.2.3(直接做在课本上) 【要点归纳】: 有理数乘法法则: 【拓展训练】 1.如果ab>0,a+b>0,确定a、b的正负。 2.对于有理数a、b定义一种运算:a*b=2a-b,计算(—2)*3+1 【总结反思】: 课题:1。4。1有理数的乘法(2) 【学习目标】: 1、经历探索多个有理数相乘的符号确定法则; 2、会进行有理数的乘法运算; 3、通过对问题的探索,培养观察、分析和概括的能力; 【学习重点】:多个有理数乘法运算符号的确定; 【学习难点】:正确进行多个有理数的乘法运算; 【导学指导】 一、温故知新 1、有理数乘法法则: 二、自主探究 1、 观察:下列各式的积是正的还是负的? 2×3×4×(-5), 2×3×(-4)×(-5), 2×(-3)× (-4)×(-5), (-2) ×(-3) ×(-4) ×(-5); 思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系? 分组讨论交流,再用自己的语言表达所发现的规律: 几个不是0的数相乘,负因数的个数是 时,积是正数; 负因数的个数是 时,积是负数。 2、新知应用 1、例题3,(P31页) 请你思考,多个不是0的数相乘,先做哪一步,再做哪一步? 你能看出下列式子的结果吗?如果能,理由 7。8×(-8。1)×O× (-19。6) 师生小结: 【课堂练习】 计算:(课本P32练习) (1)、—5×8×(-7)×(—0.25); (2)、; (3); 【要点归纳】: 1。几个不是0的数相乘,负因数的个数是 时,积是正数; 负因数的个数是 时,积是负数。 2。几个数相乘,如果其中有一个因数为0,积等于0; 【拓展训练】: (3)计算: ②(-1)×(-8)+3×(-2); ③1+0×(-1)-(-1)×(-1)-(-1)×0×(-1)。 (4)判断下列积的符号: ; 1。4。1课题:有理数的乘法(3) 【学习目标】: 1、熟练有理数的乘法运算并能用乘法运算律简化运算; 2、学生通过观察、思考、探究、讨论,主动地进行学习; 【学习重点】:正确运用运算律,使运算简化 【学习难点】:运用运算律,使运算简化 【导学指导】 一、知识链接 1、请同学们计算.并比较它们的结果: (1) (-6)×5= 5×(-6)= (2) [3×(-4)]×(-5)= 3×[(-4)×(-5)]= (3)5×[3+(-7)]; 5×3+5×(-7)。 请以小组为单位,相互检查,看计算对了吗? 二、自主探究 1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流. 2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗? 3、归纳、总结 乘法交换律:两个数相乘,交换因数的位置,积 。 即:ab= 乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 即:(ab)c= 4、新知应用 例题4 用两种方法计算 (+-)×12 ; 解法一: 解法二: 【课堂练习】: (课本P33练习) 1、(-85)×(-25)×(-4); 2、(-)×15×(-1); 3、()×30; 【要点归纳】: 【拓展训练】: 1、看谁算得快,算得准 (1)(-7)×(-)× ; (2) 9 ×18; (3)-9×(-11)+12×(-9); (4); 【总结反思】: 课题:1.4。2有理数的除法(1) 【学习目标】: 1、理解除法是乘法的逆运算; 2、理解倒数概念,会求有理数的倒数; 3、掌握除法法则,会进行有理数的除法运算; 【重点难点】:有理数的除法法则 【导学指导】 一、知识链接 1)、小红从家里到学校,每分钟走50米,共走了20分钟. 问小红家离学校有 米,列出的算式为 。 2)放学时,小红仍然以每分钟50米的速度回家,应该走 分钟. 列出的算式为 从上面这个例子你可以发现,有理数除法与乘法之间的关系是 3)写出下列各数的倒数 —4 的倒数 ,3的倒数 ,—2的倒数 ; 二、合作交流、探究新知 1、小组合作完成 比较大小:8÷(-4) 8×(一); (-15)÷3 (-15)×; (一1)÷(一2) (-1)×(一); 再相互交流、并与小学里学习的乘除方法进行类比与对比, 归纳有理数的除法法则: 1)、除以一个不等于0的数,等于 ; 2)、两数相除,同号得 ,异号得 ,并把绝对值相 ,0除以任何一个不等于0的数,都得 ; 1.自学P34例5、例6 1. 师生共同完成例7 【课堂练习】 1、练习:P35 2、练习: P36第1、2题 【要点归纳】:http://www.xkb1。com/ 有理数的除法法则: 【拓展训练】 1、计算 (1) ; (2) 0÷(—1000); (3) 375÷; 2、练习册P21(-) 【总结反思】: 课题:1.4.2有理数的除法(2) 【学习目标】: 1、学会用计算器进行有理数的除法运算; 2、掌握有理数的混合运算顺序; 【学习重点】:有理数的混合运算; 【学习难点】:运算顺序的确定与性质符号的处理; 【导学指导】 一、知识链接 1、计算 (1) (—8)÷(-4); (2) (-9)÷3 ; (3) (—0.1)÷×(—100); 2。 有理数的除法法则: 二、自主探究 1.例8 计算 (1)(-8)+4÷(—2) (2)(—7)×(—5)-90÷(-15) 你的计算方法是先算 法,再算 法。 有理数加减乘除的混合运算顺序应该是 写出解答过程 2。自学完成例9(阅读课本P36-P37页内容) 【课堂练习】 1、计算(P36练习) (1)6—(—12)÷(—3); ( 2)3×(—4)+(—28)÷7; (3)(—48)÷8-(—25)×(-6); ( 4); 2.P37练习 【要点归纳】: 【拓展训练】 1、选择题 (1)下列运算有错误的是( ) A.÷(—3)=3×(-3) B. C.8-(—2)=8+2 D。2-7=(+2)+(-7) (2)下列运算正确的是( ) A. ; B。0—2=-2; C.; D。(—2)÷(—4)=2; 2、计算 1)、18—6÷(—2)× ; 2)11+(—22)—3×(—11); 【总结反思】- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新版 初一 数学 导学案全册
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文