线线平行.线面平行、面面平行的练习题doc.doc
《线线平行.线面平行、面面平行的练习题doc.doc》由会员分享,可在线阅读,更多相关《线线平行.线面平行、面面平行的练习题doc.doc(7页珍藏版)》请在咨信网上搜索。
(完整word)线线平行.线面平行、面面平行的练习题doc 线线平行、线面平行、面面平行部分的练习题 1.如图2—3—3所示,已知α∩β=CD,α∩γ=EF,β∩γ=AB,AB∥α。求证:CD∥EF. 2.已知直线∥平面,直线∥平面,平面平面=,求证. 3。 正方形ABCD交正方形ABEF于AB(如图所示)M、N在对角线AC、FB上且AM= FN.求证:MN //平面BCE 4.如图2—3—7所示,正三棱柱ABC-A1B1C1中,D是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论。 5.、已知矩形ABCD所在的平面,M、N分别是AB、PC的中点, 求证:MN//平面PAD。 6.在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD. 7.已知在正方体ABCD-中,M、N分别是、的中点,在该正方体中作出与平面AMN平行的平面,并证明你的结论。 8.已知点 是△ 所在平面外一点,点 , , 分别是△ ,△ ,△ 的重心,求证:平面 平面 . 9。 已知三棱锥P-ABC,A′,B′C′是△PBC,△PCA,△PAB的重心. (1)求证:面A′B′C′∥面ABC; (2)求S△A′B′C′:S△ABC 。 。 10. 如图所示中,平面ABC//平面ABC,若是棱的中点,在棱上是否存在一点,使?证明你的结论 答案与提示: 1.证明:∵ABβ,ABα,又∵AB∥α,α∩β=CD,∴AB∥CD,同理AB∥EF,∴CD∥EF. 2。 证明:经过作两个平面和,与平面和分别相交于直线和, ∵∥平面,∥平面, ∴∥,∥,∴∥, 又∵平面,平面, ∴∥平面, 又平面,平面∩平面=,∴∥,又∵∥,所以,∥ 3.证:过N作NP//AB交BE于P,过M作MQ//AB交BC于Q 又 ∵ MQPN 4。 直线A1B∥平面ADC1,取B1C1的中点D1,连接A1D1,BD1,则A1D1∥AD,D1B∥C1D, ∴AD∥平面A1D1B,C1D∥平面A1D1B。 又∵AD∩C1D=D,∴平面ADC1∥平面A1D1B, ∵A1B平面A1D1B,∴A1B∥平面ADC1。 5. 证明:连AC,取AC的中点O,连OM、ON,则ON//PA,OM//BC//AD,又,所以平面MNO//平面PAD. 又平面MNO,因此,MN//平面PAD. 6. .证明:(1)分别连结B1D1、ED、FB,如答图9-3—3, 则由正方体性质得 B1D1∥BD。 ∵E、F分别是D1C1和B1C1的中点, ∴EF∥B1D1。 ∴EF∥BD. ∴E、F、B、D对共面。 (2)连结A1C1交MN于P点,交EF于点Q,连结AC交BD于点O,分别连结PA、QO。 ∵M、N为A1B1、A1D1的中点, ∴MN∥EF,EF面EFBD。 ∴MN∥面EFBD。 ∵PQ∥AO, ∴四边形PAOQ为平行四边形. ∴PA∥OQ. 而OQ平面EFBD, ∴PA∥面EFBD. 且PA∩MN=P,PA、MN面AMN, ∴平面AMN∥平面EFBD。 7 . .解析:与平面AMN平行的平面可以有以下三种情况: 下面以第(1)个图为例进行证明. 证明:因为四边形ABEM是平行四边形,所以BE//AM,而平面BDE, 所以AM//平面BDE。 又因为MN是▲的中位线,所以MN//,而四边形 BD是平行四边形,所以BD//,由平行公理可得MN//BD,又平面BDE, 所以MN//平面BDE。 又,所以由平面与平面平行的判定定理可得, 平面AMN//平面BDE。其他两种情况如图(二)、(三)所示,可以自己证明。 8. 略证:设 分别是边 的中点,则 , 且 ,从而得 , 面 ;同理 平面 . 9.(1)证明:设M,N是BC,AB的中点。 连接PN,PM,则C′,A′分别在PN,PM上。 在△PMN中, 。 ∴ ∥MN∥AC,且 = AC. ∴ ∥平面ABC。 同理,A′B′∥平面ABC. 又∵ ∩A′B′=A′, ∴平面A′B′C′∥平面ABC. (2)同理A′B′= AB, = , ∴△A′B′C′∽△ABC。 ∴S△A′B′C′:S△ABC =1:9。 10。证明: 当点为棱的中点时,//平面. 证明如下:如图,取的中点,连、、, ∵、、分别为、、的中点, ∴EF//AB∵平面,平面, ∴EF//平面. 同理可证FD//平面.∵, E F A B C A1 B1 C1 D ∴平面//平面.∵平面, ∴//平面.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线线 平行 面面 练习题 doc
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文