八年级数学下册-第18章-勾股定理章末复习教案沪科版.doc
《八年级数学下册-第18章-勾股定理章末复习教案沪科版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册-第18章-勾股定理章末复习教案沪科版.doc(8页珍藏版)》请在咨信网上搜索。
八年级数学下册 第18章 勾股定理章末复习教案沪科版 八年级数学下册 第18章 勾股定理章末复习教案沪科版 年级: 姓名: 8 章末复习 【知识与技能】 进一步理解勾股定理及其逆定理,弄清两定理之间的关系. 【过程与方法】 复习直角三角形的有关知识,形成知识体系. 【情感态度】 运用勾股定理及其逆定理解决问题. 【教学重点】 复习直角三角形的有关知识,形成知识体系. 【教学难点】 运用勾股定理及其逆定理解决问题. 一、知识框图,整体把握 【教学说明】 教师引导学生回顾本章知识点,边回顾边画出本章知识框图,使学生对本章知识有一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用奠定基础. 二、释疑解惑,加深理解 1.勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系.求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2.如何判定一个三角形是直角三角形 (1)先确定最大边(如c) (2)验证c2与a2+b2是否具有相等关系 (3)若c2=a2+b2,则△ABC是以∠C为直角的直角三角形;若c2≠a2+b2,则△ABC不是直角三角形. 3.勾股数满足a2+b2=c2的三个正整数,称为勾股数 如(1)3,4,5;(2)5,12,13;(3)6,8,10; (4)8,15,17;(5)7,24,25;(6)9,40,41 【教学说明】 教师引导学生对本章重点知识和需要注意的问题进行详细的回顾,使学生对本章知识进行进一步的理解,形成知识网络. 三、典例精析,复习新知 例1 在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=___ 解:依据这个图形的基本结构,可设S1、S2、S3、S4的边长为a、b、c、d,则有a2+b2=1,c2+d2=3,S1=b2,S2=a2,S3=c2,S4=d2 S1+S2+S3+S4=b2+a2+c2+d2=1+3=4 例2 如图△ABC中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC的长. 【分析】此题将勾股定理与全等三角形的知识结合起来 解:作DE⊥AB于E, ∵∠1=∠2,∠C=90° ∴DE=CD=1.5 在△BDE中,∵∠BED=90°,BE=BD2-DE2=2 ∵Rt△ACD≌Rt△AED ∴AC=AE在Rt△ABC中,∠C=90° ∴AB2=AC2+BC2,(AE+EB)2=AC2+42∴AC=3 例3 如果△ABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断△ABC的形状. 【分析】要判断△ABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题. 解:由a2+b2+c2+50=6a+8b+10c,得a2-6a+9+b2-8b+16+c2-10c+25=0, ∴(a-3)2+(b-4)2+(c-5)2=0. ∵(a-3)2≥0,(b-4)2≥0,(c-5)2≥0. ∴a=3,b=4,c=5. ∵32+42=52, ∴a2+b2=c2. 由勾股定理的逆定理,得△ABC是直角三角形. 总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常需要用到. 例4 如图,正方形ABCD中,E是BC边上的中点,F是AB上一点,且FB=14AB那么△DEF是直角三角形吗?为什么? 【分析】这道题把很多条件都隐藏了,乍一看有点摸不着头脑.仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由FB=AB可以设AB=4a,那么BE=CE=2a,AF=3a,BF=a,那么在Rt△AFD、Rt△BEF和Rt△CDE中,分别利用勾股定理求出DF,EF和DE的长,反过来再利用勾股定理逆定理去判断DEF是否是直角三角形. 解: 设正方形ABCD的边长为4a,则BE=CE=2a,AF=3a,BF=a 在Rt△CDE中,DE2=CD2+CE2=(4a)2+(2a)2=20a2 同理EF2=5a2,DF2=25a2 在△DEF中,EF2+DE2=5a2+20a2=25a2=DF2 ∴△DEF是直角三角形,且∠DEF=90°. 例5 如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒? 【分析】(1)要判断拖拉机的噪音是否影响学校A,实质上是看A到公路的距离是否小于100m,小于100m则受影响,大于100m则不受影响,故作垂线段AB并计算其长度. (2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程.因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校. 解:作AB⊥MN,垂足为B. 在Rt△ABP中,∠ABP=90°,∠APB=30°,AP=160, ∴AB= AP=80.(在直角三角形中,30°所对的直角边等于斜边的一半) ∵点A到直线MN的距离小于100m, ∴这所中学会受到噪声的影响. 如图,假设拖拉机在公路MN上沿PN方向行驶到点C处学校开始受到影响,那么AC=100(m), 由勾股定理得:BC2=1002-802=3600,∴BC=60. 同理,拖拉机行驶到点D处学校开始脱离影响,那么,AD=100(m),BD=60(m), ∴CD=120(m).拖拉机行驶的速度为:18km/h=5m/st=120m÷5m/s=24s. 答:拖拉机在公路MN上沿PN方向行驶时,学校会受到噪声影响,学校受影响的时间为24秒. 【总结升华】 勾股定理是求线段的长度的很重要的方法,若图形缺少直角条件,则可以通过作辅助垂线的方法,构建直角三角形以便利用勾股定理. 【教学说明】 教师出示典型例题,让学生先尝试解答,教师予以讲解,在讲解的过程中,应着重于知识点的应用和解题方法的渗透. 四、复习训练,巩固提高 1.如图(1)、(2)中,(1)正方形A的面积为_______.(2)斜边x=_______. 2.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2的值等于_______. 3.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中有_______个直角三角形. 4.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为_______. 5.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑行爱好者从A点到E点,则他滑行的最短距离是多少?(边缘部分的厚度可以忽略不计,结果取整数) 6.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米? 答案1.(1)36 (2)13 2. 2π 3.1 4.3 5.约22米.根据半圆柱的展开图可计算得:AE= ≈22米. 6.如图12,在Rt△ABC中,根据勾股定理可知, BC= =3000(米). 3000÷20=150米/秒=540千米/小时. 所以飞机每小时飞行540千米. 【教学说明】 学生独立完成练习,进一步熟练相关知识点的应用和提高解题能力. 五、师生互动,课堂小结 通过本节课的学习,你有哪些收获? 【教学说明】 教师引导学生对本章所学知识进行回顾与反思,对学生提出的疑问进行解答,帮助学生熟练掌握本章所学知识. 完成同步练习册中本课时的练习. 勾股定理是比较重要的知识点,它完美刻画了直角三角形中三边的关系,也是数形结合的一种重要体现,虽然它的知识点很少,但在实际应用中很广泛. 在复习时给于学生不同题目的类型,使他们能够充分了解勾股定理的重要性.通过复习,让学生对本单元所学知识系统化,加强前后各部分知识之间的联系,综合运用所学知识分析解决问题,通过对这些问题的分析解答,达到梳理本章内容,建立一定知识体系的目的.关注学生运用例子说明自己对有关知识的理解,而不是简单复述教科书上的结论. 要让学生自己绘制知识网络图,进一步体会本章所学知识之间的前后联系,并培养了学生这方面的能力. 设计的问题尽量与实际问题有联系,体现数学来源于实际,又应用于生活实际.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 18 勾股定理 复习 教案 沪科版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文