河北省博野县2022年九年级数学第一学期期末统考试题含解析.doc
《河北省博野县2022年九年级数学第一学期期末统考试题含解析.doc》由会员分享,可在线阅读,更多相关《河北省博野县2022年九年级数学第一学期期末统考试题含解析.doc(23页珍藏版)》请在咨信网上搜索。
2022-2023学年九上数学期末模拟试卷 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(每题4分,共48分) 1.关于反比例函数,下列说法正确的是( ) A.点在它的图象上 B.它的图象经过原点 C.当时,y随x的增大而增大 D.它的图象位于第一、三象限 2.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则为( ) A. B. C. D. 3.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84). A.5.1米 B.6.3米 C.7.1米 D.9.2米 4.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差: 甲 乙 丙 丁 平均数(cm) 181 186 181 186 方差 3.5 3.5 6.5 7.5 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ) A.甲 B.乙 C.丙 D.丁 5.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为( ) A.米 B.米 C.米 D.米 6.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是( ) A.25° B.50° C.65° D.75° 7.如图,是的直径,,是圆周上的点,且,则图中阴影部分的面积为( ) A. B. C. D. 8.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是( ) A. B. C. D. 9.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值( ) A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和5 10.如图,在一张矩形纸片中,对角线,点分别是和的中点,现将这张纸片折叠,使点落在上的点处,折痕为,若的延长线恰好经过点,则点到对角线的距离为( ). A. B. C. D. 11.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( ) A.15cm B.20cm C.25cm D.30cm 12.(11·大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验, 得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002、s乙2=0.03,则 ( ) A.甲比乙的产量稳定 B.乙比甲的产量稳定 C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定 二、填空题(每题4分,共24分) 13.如图,AD,BC相交于点O,AB∥CD.若AB=2,CD=3,则△ABO与△DCO的面积之比为_____. 14.如图,的直径垂直弦于点,且,,则弦__________. 15.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式) 16.将半径为12,圆心角为的扇形围成一个圆锥的侧面,则此圆锥的底面圆的半径为____. 17.如图,分别以等边三角形的每个顶点为圆心,边长为半径,在另两个顶点之间作一段弧,三段弧围成的曲边三角形称为“勒洛三角形”,若等边三角形的边长为2,则“勒洛三角形”的面积为_________. 18.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的是______________(只填序号) 三、解答题(共78分) 19.(8分)如图,双曲线上的一点,其中,过点作轴于点,连接. (1)已知的面积是,求的值; (2)将绕点逆时针旋转得到,且点的对应点恰好落在该双曲线上,求的值. 20.(8分)如图,AB是⊙O的直径,C是⊙O上一点,且AC=2,∠CAB=30°,求图中阴影部分面积. 21.(8分)感知:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,过点D作DE⊥CB交CB的延长线于点E,连接CD. (1)求证:△ACB≌△BED; (2)△BCD的面积为 (用含m的式子表示). 拓展:如图②,在一般的Rt△ABC,∠ACB=90°,BC=m,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由. 应用:如图③,在等腰△ABC中,AB=AC,BC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为 ;若BC=m,则△BCD的面积为 (用含m的式子表示). 22.(10分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为10cm,点A,C,E在同一条直线上,且∠CAB=75°,如图1. (1)求车架档AD的长; (1)求车座点E到车架档AB的距离. (结果精确到1 cm.参考数据: sin75°="0.966," cos75°=0.159,tan75°=3.731) 23.(10分)如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是_____. 24.(10分)如图,△ABC是⊙O的内接三角形,BC=4,∠A=30°,求⊙O的直径. 25.(12分)某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每降价1元,每星期可多卖出20件. 已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少? 26.如图,有三张不透明的卡片,除正面标记有不同数字外,其它均相同.将这三张卡片反面朝上洗匀后,从中随机抽取一张;放回洗匀后,再随机抽取一张.我们把第一次抽取的卡片上标记的数字记作,第二次抽取的卡片上标记的数字记作. (1)写出为负数的概率; (2)求使得一次函数的图象经过第二、三、四象限的概率.(用树状图或列表法求解) 参考答案 一、选择题(每题4分,共48分) 1、D 【分析】根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小. 【详解】解:A、把(2,-1)代入,得1=-1不成立,故选项错误; B、反比例函数图像不经过原点,故选项错误; C、当x>0时,y随x的增大而减小,故选项错误. D、∵k=2>0,∴它的图象在第一、三象限,故选项正确; 故选D. 【点睛】 本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大. 2、D 【分析】先证明△ADE∽△ABC,然后根据相似三角形的面积的比等于相似比的平方求解即可. 【详解】∵BC∥DE, ∴△ADE∽△ABC, ∵DE把△ABC分成的两部分面积相等, ∴△ADE:△ABC=1:2, ∴. 故选D. 【点睛】 本题主要考查了相似三角形的判定与性质,平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;相似三角形面积的比等于相似比的平方. 3、A 【解析】如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q, ∵CE∥AP, ∴DP⊥AP, ∴四边形CEPQ为矩形, ∴CE=PQ=2,CQ=PE, ∵i=, ∴设CQ=4x、BQ=3x, 由BQ² +CQ²=BC²可得(4x)²+(3x)²=102, 解得:x=2或x=−2(舍), 则CQ=PE=8,BQ=6, ∴DP=DE+PE=11, 在Rt△ADP中,∵AP=≈13.1, ∴AB=AP−BQ−PQ=13.1−6−2=5.1, 故选A. 点睛:此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键. 4、B 【分析】根据平均数与方差的意义解答即可. 【详解】解: , 乙与丁二选一, 又, 选择乙. 【点睛】 本题考查数据的平均数与方差的意义,理解两者所代表的的意义是解答关键. 5、B 【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长. 【详解】解:作AD⊥BC于点D, 则BD=+0.3=, ∵cosα=, ∴cosα=, 解得,AB=米, 故选B. 【点睛】 本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答. 6、C 【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可. 【详解】解:∵根据圆周角定理得:∠AOC=2∠ABC, ∵∠ABC+∠AOC=75°, ∴∠AOC=×75°=50°, ∵OA=OC, ∴∠OAC=∠OCA=(180°﹣∠AOC)=65°, 故选C. 【点睛】 本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键. 7、D 【分析】连接OC,过点C作CE⊥OB于点E,根据圆周角定理得出,则有是等边三角形,然后利用求解即可. 【详解】连接OC,过点C作CE⊥OB于点E ∴是等边三角形 故选:D. 【点睛】 本题主要考查圆周角定理及扇形的面积公式,掌握圆周角定理及扇形的面积公式是解题的关键. 8、A 【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目. 【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图. 故选:A. 【点睛】 本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别. 9、B 【解析】先求出二次函数的对称轴为直线x=-1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可. 【详解】∵二次函数y=(x+1)2-4, 对称轴是:x=-1 ∵a=-1>0, ∴x>-1时,y随x的增大而增大,x<-1时,y随x的增大而减小, 由图象可知:在-2≤x≤2内,x=2时,y有最大值,y=(2+1)2-4=5, x=-1时y有最小值,是-4, 故选B. 【点睛】 本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键. 10、B 【分析】设DH与AC交于点M,易得EG为△CDH的中位线,所以DG=HG,然后证明△ADG≌△AHG,可得AD=AH,∠DAG=∠HAG,可推出∠BAH=∠HAG=∠DAG=30°,然后设BH=a,则BC=AD=AH=2a,利用勾股定理建立方程可求出a,然后在Rt△AGM中,求出GM,AG,再求斜边AM上的高即为G到AC的距离. 【详解】如图,设DH与AC交于点M,过G作GN⊥AC于N, ∵E、F分别是CD和AB的中点, ∴EF∥BC ∴EG为△CDH的中位线 ∴DG=HG 由折叠的性质可知∠AGH=∠B=90° ∴∠AGD=∠AGH=90° 在△ADG和△AHG中, ∵DG=HG,∠AGD=∠AGH,AG=AG ∴△ADG≌△AHG(SAS) ∴AD=AH,AG=AB,∠DAG=∠HAG 由折叠的性质可知∠HAG=∠BAH, ∴∠BAH=∠HAG=∠DAG=∠BAD=30° 设BH=a, 在Rt△ABH中,∠BAH=30° ∴AH=2a ∴BC=AD=AH=2a,AB= 在Rt△ABC中,AB2+BC2=AC2 即 解得 ∴DH=2GH=2BH=,AG=AB= ∵CH∥AD ∴△CHM∽△ADM ∴ ∴AM=AC=,HM=DH= ∴GM=GH-HM= 在Rt△AGM中, ∴ 故选B. 【点睛】 本题考查了矩形的性质,折叠的性质,全等三角形与相似三角形的判定与性质,以及勾股定理的应用,解题的关键是求出∠BAH=30°,再利用勾股定理求出边长. 11、D 【分析】根据底面周长=展开图的弧长可得出结果. 【详解】解:设这个圆锥的底面半径为r, 根据题意得2πr=, 解得r=30(cm), 即这个圆锥的底面半径为30cm. 故选:D. 【点睛】 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长. 12、A 【解析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好. 【详解】因为s=0.002<s=0.03, 所以,甲比乙的产量稳定. 故选A 【点睛】本题考核知识点:方差. 解题关键点:理解方差意义. 二、填空题(每题4分,共24分) 13、 【分析】由AB∥CD可得出∠A=∠D,∠B=∠C,进而可得出△ABO∽△DCO,再利用相似三角形的性质可求出△ABO与△DCO的面积之比. 【详解】∵AB∥CD, ∴∠A=∠D,∠B=∠C, ∴△ABO∽△DCO, ∴. 故答案为:. 【点睛】 此题考查相似三角形的判定及性质,相似三角形的面积的比等于相似比的平方. 14、 【分析】先根据题意得出⊙O的半径,再根据勾股定理求出BE的长,进而可得出结论. 【详解】连接OB,∵,, ∴OC=OB=(CE+DE)=5, ∵CE=3, ∴OE=5−3=2, ∵CD⊥AB, ∴BE==. ∴AB=2BE=. 故答案为:. 【点睛】 本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 15、 【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案. 【详解】解:点,反比例函数经过点B,则点, 则,, ∴, 设,则,, 由勾股定理得:, 解得:,故点, 将点C、G、A坐标代入二次函数表达式得:,解得:, 故答案为. 【点睛】 本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法. 16、1 【分析】设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式可得到关于r的方程,然后解方程即可. 【详解】设圆锥的底面圆的半径为r, 根据题意得 解得r=1,即这个圆锥的底面圆的半径为1. 故答案为:1. 【点睛】 本题考查了圆锥的计算,熟练掌握弧长公式,根据扇形的弧长等于圆锥底面的周长建立方程是解题的关键. 17、 【分析】图中勒洛三角形是由三块相同的扇形叠加而成,其面积三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可. 【详解】解:过作于, ∵是等边三角形, ,, , ,, 的面积为, , 勒洛三角形的面积, 故答案为:. 【点睛】 本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出勒洛三角形的面积三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键. 18、①③④ 【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=- =1,即b=-2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1, ∴抛物线与x轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y>0, 即a-b+c>0,所以①正确; ∵抛物线的对称轴为直线x=-=1,即b=-2a, ∴3a+b=3a-2a=a,所以②错误; ∵抛物线的顶点坐标为(1,n), ∴=n, ∴b2=4ac-4an=4a(c-n),所以③正确; ∵抛物线与直线y=n有一个公共点, ∴抛物线与直线y=n-1有2个公共点, ∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确. 故答案为:①③④. 【点睛】 此题考查二次函数图象与系数的关系,解题关键在于掌握运算法则. 三、解答题(共78分) 19、(1)6;(2) 【分析】(1)根据点A坐标及三角形面积公式求得的值,从而求得的值; (2)延长交轴于点,根据旋转的性质可得,,然后判定四边形为矩形,用含m,n的式子表示出点C的坐标,将点A,C代入反比例解析式中,得到关于m的方程,解方程,从而求解. 【详解】解:(1)∵,轴于点, ∴,. 又, ∴. ∵点在双曲线上, ∴. (2)延长交轴于点. ∵绕点逆时针旋转得到, ∴,, ∴,,. ∵轴于点,∴, ∴四边形为矩形,∴, ∴轴,∴, ∴,, ∴. ∵点都在双曲线上, ∴, 化简得. 解法一:解关于的方程,得. ∵,∴, ∴. 解法二:方程两边同时除以,得, 解得. ∵, ∴. 【点睛】 本题考查反比例函数的应用,比例系数k的几何意义,旋转的性质,及一元二次方程的解法,综合性较强,利用数形结合思想解题是本题的解题关键. 20、+ 【分析】根据扇形的面积公式进行计算即可. 【详解】解:连接OC且过点O作AC的垂线,垂足为D,如图所示. ∵OA=OC ∴AD=1 在Rt△AOD中 ∵∠DAO=30° ∴ ∴OD=, ∴ 由OA=OC;∠DAO=30可得∠COB=60° ∴S扇形BOC= ∴S阴影=S△AOC+ S扇形BOC=+ 【点睛】 本题考查扇形的面积公式,熟记扇形的面积公式是解题的关键. 21、感知:(1)详见解析;(1)m1;拓展: m1,理由详见解析;应用:16, m1. 【解析】感知:(1)由题意可得CA=CB,∠A=∠ABC=25°,由旋转的性质可得BA=BD,∠ABD=90°,可得∠DBE=∠ABC,即可证△ACB≌△BED; (1)由△ACB≌△BED,可得BC=DE=m,根据三角形面积求法可求△BCD的面积; 拓展:作DG⊥CB交CB的延长线于G,可证△ACB≌△BGD,可得BC=DG=m,根据三角形面积求法可求△BCD的面积; 应用:过点A作AN⊥BC于N,过点D作DM⊥BC的延长线于点M,由等腰三角形的性质可以得出BN=BC,由条件可以得出△AFB≌△BED就可以得出BN=DM,由三角形的面积公式就可以得出结论. 【详解】感知:证明:(1)∵△ABC是等腰直角三角形, ∴CA=CB=m,∠A=∠ABC=25°, 由旋转的性质可知,BA=BD,∠ABD=90°, ∴∠DBE=25°, 在△ACB和△DEB中, , ∴△ACB≌△BED(AAS) (1)∵△ACB≌△BED ∴DE=BC=m ∴S△BCD=BC×ED=m1, 故答案为 m1, 拓展:作DG⊥CB交CB的延长线于G, ∵∠ABD=90°, ∴∠ABC+∠DBG=90°,又∠ABC+∠A=90°, ∴∠A=∠DBG, 在△ACB和△BGD中, , ∴△ACB≌△BGD(AAS), ∴BC=DG=m ∴S△BCD=BC×DG=m1, 应用:作AN⊥BC于N,DM⊥BC交CB的延长线于M, ∴∠ANB=∠M=90°,BN=BC=2. ∴∠NAB+∠ABN=90°. ∵∠ABD=90°, ∴∠ABN+∠DBM=90°, ∴∠NAB=∠MBD. ∵线段BD是由线段AB旋转得到的, ∴AB=BD. 在△AFB和△BED中, , ∴△ANB≌△BMD(AAS), ∴BN=DM=BC=2. ∴S△BCD=BC•DM=×8×2=16, 若BC=m,则BN=DM=BC=m, ∴S△BCD=BC•DM=×m×m=m1 故答案为16,m1. 【点睛】 本题考查了等腰三角形的性质,全等三角形的判定(AAS),全等三角形的性质,直角三角形的性质,面积计算,熟练掌握这些知识点是本题解题的关键. 22、(1)75cm(1)2cm 【解析】解:(1)在Rt△ACD中,AC=45,CD=60,∴AD=, ∴车架档AD的长为75cm. (1)过点E作EF⊥AB,垂足为点F, 距离EF=AEsin75°=(45+10)sin75°≈61.7835≈2. ∴车座点E到车架档AB的距离是2cm. (1)在Rt△ACD中利用勾股定理求AD即可. (1)过点E作EF⊥AB,在Rt△EFA中,利用三角函数求EF=AEsin75°,即可得到答案. 23、58° 【分析】直接利用圆周角定理求解. 【详解】∵∠AOC和∠ADC都对, ∴∠ADC=∠AOC=×116°=58°. 故答案为:58°. 【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 24、1 【分析】连接OB,OC,根据圆周角定理得到∠BOC=60°,根据等边三角形的性质即可得到结论. 【详解】解:连接OB,OC, ∵∠A=30°, ∴∠BOC=60°, ∵OB=OC, ∴△OBC是等边三角形, ∴OC=BC=4, ∴⊙O的直径=1. 【点睛】 本题考查三角形的外接圆与外心,等边三角形的判定和性质,解题关键是正确的作出辅助线. 25、定价为57.5元时,所获利润最大,最大利润为6125元. 【分析】设所获利润为元,每件降价元,先求出降价后的每件利润和销量,再根据“利润=每件利润销量”列出等式,然后根据二次函数的性质求解即可. 【详解】设所获利润为元,每件降价元 则降价后的每件利润为元,每星期销量为件 由利润公式得: 整理得: 由二次函数的性质可知,当时,y随x的增大而增大;当时,y随x的增大而减小 故当时,y取得最大值,最大值为6125元 即定价为:元时,所获利润最大,最大利润为6125元. 【点睛】 本题考查了二次函数的应用,依据题意正确得出函数的关系式是解题关键. 26、(1);(2) 【分析】(1)用负数的个数除以数的总数即为所求的概率; (2)画树状图列举出所有情况,看k<0,b<0的情况占总情况的多少即可. 【详解】解:(1)共有3个数,其中负数有2个,那么为负数的概率为 (2)画树状图可知, 两次抽取卡片试验共有9种不同结果 ,每种可能性相同 “一次函数图象经过第二、三、四象限”等价于“且” 抽取卡片满足,有 4 种情况 所以,一次函数图象经过第二、三、四象限的概率是. 【点睛】 考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.注意过二、三、四象限的一次函数的k为负数,b为负数.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河北省 博野县 2022 九年级 数学 第一 学期 期末 统考 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文