北京市昌平区北京人大附中昌平校区2022年九年级数学第一学期期末监测模拟试题含解析.doc
《北京市昌平区北京人大附中昌平校区2022年九年级数学第一学期期末监测模拟试题含解析.doc》由会员分享,可在线阅读,更多相关《北京市昌平区北京人大附中昌平校区2022年九年级数学第一学期期末监测模拟试题含解析.doc(18页珍藏版)》请在咨信网上搜索。
2022-2023学年九上数学期末模拟试卷 注意事项 1.考试结束后,请将本试卷和答题卡一并交回. 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符. 4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、选择题(每题4分,共48分) 1.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为( ) A.1 B.2 C. D. 2.已知平面直角坐标系中,点关于原点对称的点的坐标是( ) A. B. C. D. 3.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC于点P,OP=2,则⊙O的半径为( ). A.4 B.6 C.8 D.12 4.下列几何体的左视图为长方形的是( ) A. B. C. D. 5.如图,在中,,,平分,是的中点,若,则的长为( ) A.4 B. C. D. 6.小明随机地在如图正方形及其内部区域投针,则针扎到阴影区域的概率是( ) A. B. C. D. 7.已知反比例函数的图象经过点,小良说了四句话,其中正确的是( ) A.当时, B.函数的图象只在第一象限 C.随的增大而增大 D.点不在此函数的图象上 8.如图,在平面直角坐标系中,与轴相切于点,为的直径,点在函数的图象上,若的面积为,则的值为( ) A.5 B. C.10 D.15 9.下列方程中,是关于x的一元二次方程的是( ) A.5x+5=2x﹣1 B.y2﹣7y=0 C.ax2+bc+c=0 D.2x2+2x=x2-1 10.函数中,自变量的取值范围是( ) A. B. C. D.x≤1或x≠0 11.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a,b的大小关系为 ( ) A.a>b B.a<b C.a=b D.不能确定 12.如图,⊙O的弦AB垂直平分半径OC,若AB=,则⊙O的半径为( ) A. B.2 C. D. 二、填空题(每题4分,共24分) 13.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________. 14.某工厂去年10月份机器产量为500台,12月份的机器产量达到720台,设11、12月份平均每月机器产量增长的百分率为x,则根据题意可列方程_______________ 15.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____. 16.已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6cm,则d=_____cm; 17.抛物线y=x2﹣4x+3与x轴两个交点之间的距离为_____. 18.如图,边长为的正六边形在足够长的桌面上滚动(没有滑动)一周,则它的中心点所经过的路径长为______. 三、解答题(共78分) 19.(8分)已知:如图,在四边形ABCD中,AD∥BC,∠C=90°,AB=AD,连接BD,AE⊥BD,垂足为E. (1)求证:△ABE∽△DBC; (2)若 AD=25,BC=32,求线段AE的长. 20.(8分)如图,一位同学想利用树影测量树高,他在某一时刻测得高为的竹竿影长为,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,他先测得留在墙上的影高,又测得地面部分的影长,则他测得的树高应为多少米? 21.(8分)解方程:x2﹣x=3﹣x2 22.(10分)如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为米的正方形后,剩下的部分刚好能围成一个容积为米的无盖长方体箱子,且此长方体箱子的底面长比宽多米,现已知购买这种铁皮每平方米需元钱,算一算张大叔购回这张矩形铁皮共花了________元钱. 23.(10分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1. (1)若该方程有一根为2,求a的值及方程的另一根; (2)当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根. 24.(10分)计算: (1)() (2)-14 + 25.(12分)如图,直线y=x+3分别交 x轴、y轴于点A、C.点P是该直线与双曲线在第一象限内的一个交点,PB⊥x轴于B,且S△ABP=16. (1)求证:△AOC∽△ABP; (2)求点P的坐标; (3)设点Q与点P在同一个反比例函数的图象上,且点Q在直线PB的右侧,作QD⊥x轴于D,当△BQD与△AOC相似时,求点Q的横坐标. 26.如图,点A在轴上,OA=6,将线段OA绕点O顺时针旋转120°至OB的位置. (1)求点B的坐标; (2)求经过点A、O、B的抛物线的解析式. 参考答案 一、选择题(每题4分,共48分) 1、C 【分析】连接OC,BC,过点O作OD⊥AC于D,可得OD//BC,利用平行线段成比例可知 和AD=,利用勾股定理,可得,列出方程 , 即可求出OD的长. 【详解】解:连接OC,BC,过点O作OD⊥AC于D, ∴∠ADO=90°, ∵AB为的直径,AB=4,, ∴∠ACB=90°,OA=OC=, ∴OD//BC, ∴, ∴AD=, 在中,, ∴, 解得OD=; 故选C. 【点睛】 本题主要考查了平行线段成比例,勾股定理,掌握平行线段成比例,勾股定理是解题的关键. 2、C 【解析】∵在平面直角坐标系中,关于原点对称的两个点的横坐标与横坐标、纵坐标与纵坐标都互为相反数, ∴点P(1,-2)关于原点的对称点坐标为(-1,2), 故选C. 3、A 【解析】∵圆心角∠AOC与圆周角∠B所对的弧都为,且∠B=60°, ∴∠AOC=2∠B=120°(在同圆或等圆中,同弧所对圆周角是圆心角的一半). 又OA=OC,∴∠OAC=∠OCA=30°(等边对等角和三角形内角和定理). ∵OP⊥AC,∴∠AOP=90°(垂直定义). 在Rt△AOP中,OP=2,∠OAC=30°, ∴OA=2OP=4(直角三角形中,30度角所对的边是斜边的一半). ∴⊙O的半径4.故选A. 4、C 【解析】分析:找到每个几何体从左边看所得到的图形即可得出结论. 详解:A.球的左视图是圆; B.圆台的左视图是梯形; C.圆柱的左视图是长方形; D.圆锥的左视图是三角形. 故选C. 点睛:此题主要考查了简单几何体的三视图,关键是掌握每个几何体从左边看所得到的图形. 5、B 【分析】首先证明,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即. 【详解】解: 设 则, 在中, 即 解得 为中点, 故选B 【点睛】 本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形. 6、D 【分析】根据几何概型的意义,求出圆的面积,再求出正方形的面积,算出其比值即可. 【详解】解:设正方形的边长为2a,则圆的半径为a, 则圆的面积为:, 正方形的面积为:, ∴针扎到阴影区域的概率是, 故选:D. 【点睛】 本题考查几何概型的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积和总面积的比,这个比即事件(A)发生的概率. 7、D 【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断. 【详解】解:∵反比例函数的图象经过点(3,2), ∴k=2×3=6, ∴, ∴图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误, ∴点不在此函数的图象上,选项D正确; 故选:D. 【点睛】 本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型. 8、C 【分析】首先设点C坐标为,根据反比例函数的性质得出,然后利用圆的切线性质和三角形OAB面积构建等式,即可得解. 【详解】设点C坐标为,则 ∵与轴相切于点, ∴CB⊥OB ∵的面积为 ∴,即 ∵为的直径 ∴BC=2AB ∴ 故选:C. 【点睛】 此题主要考查圆的切线性质以及反比例函数的性质,熟练掌握,即可解题. 9、D 【分析】根据一元二次方程的定义逐个判断即可. 【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意; B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意; C、只有当a≠0时,是关于x的一元二次方程,故本选项不符合题意; D、是关于x的一元二次方程,故本选项符合题意; 故选:D. 【点睛】 本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键. 10、D 【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【详解】根据题意得,且, 解得:且. 故选:D. 【点睛】 本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负. 11、D 【解析】∵二次函数y=a(x+1)2-b(a≠0)有最小值,∴a>0,∵无论b为何值,此函数均有最小值,∴a、b大小无法确定. 12、A 【解析】试题分析:连接OA,设⊙O的半径为r,由于AB垂直平分半径OC,AB=,则AD=,OD=,在Rt△AOD中,OA2=OD2+AD2,即r2=()2+()2,解得r=. 考点:(1)垂径定理;(2)勾股定理. 二、填空题(每题4分,共24分) 13、1 【分析】根据菱形的性质得出CD=AD,BC∥OA,根据D (4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案. 【详解】∵四边形ABCO是菱形, ∴CD=AD,BC∥OA, ∵D (4,2),反比例函数的图象经过点D, ∴k=8,C点的纵坐标是2×2=4, ∴, 把y=4代入得:x=2, ∴n=3−2=1, ∴向左平移1个单位长度,反比例函数能过C点, 故答案为1. 【点睛】 本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键. 14、 【分析】根据增长率公式即可列出方程. 【详解】解:根据题意可列方程为:, 故答案为:. 【点睛】 本题考查一元二次方程的应用——增长率问题.若连续两期增长率相同,那么a(1+x)2=b,其中a为变化前的量,b为变化后的量,增长率为x. 15、k≥-1 【解析】首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可. 【详解】当时,方程是一元一次方程:,方程有实数根; 当时,方程是一元二次方程, 解得:且. 综上所述,关于的方程有实数根,则的取值范围是. 故答案为 【点睛】 考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略 这种情况. 16、3. 【详解】根据题意得:a:b=c:d, ∵a=3cm,b=4cm,c=6cm, ∴3:4=6:d, ∴d=3cm. 考点:3.比例线段;3.比例的性质. 17、2. 【解析】令y=0,可以求得相应的x的值,从而可以求得抛物线与x轴的交点坐标,进而求得抛物线y=x2﹣4x+3与x轴两个交点之间的距离. 【详解】∵抛物线y=x2﹣4x+3=(x﹣3)(x﹣2),∴当y=0时,0=(x﹣3)(x﹣2),解得:x2=3,x2=2. ∵3﹣2=2,∴抛物线y=x2﹣4x+3与x轴两个交点之间的距离为2. 故答案为:2. 【点睛】 本题考查了抛物线与x轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答. 18、 【分析】首先求得从B到B´时,圆心O的运动路线与点F运动的路线相同,即是的长,又由正六边形的内角为120°,求得所对 的圆心角为60°,根据弧长公式计算即可. 【详解】解:∵正六边形的内角为120°, ∴∠BAF=120°, ∴∠FAF´=60°, ∴ ∴正六边形在桌子上滚动(没有滑动)一周,则它的中心O点所经过的路径长为: 故答案为: 【点睛】 本题考查的是正六边形的性质及正六边形中心的运动轨迹长,找到其运动轨迹是解决本题的关键. 三、解答题(共78分) 19、(1)证明见解析;(2)1 【分析】(1)由等腰三角形的性质可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又因为∠AEB=∠C=90°,所以可证△ABE∽△DBC; (2)由等腰三角形的性质可知,BD=2BE,根据△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE即可. 【详解】(1)证明:∵AB=AD=25, ∴∠ABD=∠ADB, ∵AD∥BC, ∴∠ADB=∠DBC, ∴∠ABD=∠DBC, ∵AE⊥BD, ∴∠AEB=∠C=90°, ∴△ABE∽△DBC; (2)解:∵AB=AD,又AE⊥BD, ∴BE=DE, ∴BD=2BE, 由△ABE∽△DBC, 得 , ∵AB=AD=25,BC=32, ∴ , ∴BE=20, ∴AE==1. 【点睛】 此题考查相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质及勾股定理解题. 20、树高为米. 【分析】延长交BD延长线于点,根据同一时刻,物体与影长成正比可得,根据AB//CD可得△AEB∽△CED,可得,即可得出,可求出DE的长,由BE=BD+DE可求出BE的长,根据求出AB的长即可. 【详解】延长和相交于点,则就是树影长的一部分, ∵某一时刻测得高为的竹竿影长为, ∴, ∵AB//CD, ∴△AEB∽△CED, ∴, ∴, ∴, ∴, ∴, ∴即树高为米. 【点睛】 本题考查相似三角形的应用,熟练掌握同一时刻,物体与影长成正比及相似三角形判定定理是解题关键. 21、x=或x=-1. 【分析】根据因式分解法即可求出答案. 【详解】原方程化为2x2-x-3=0, ∴(2x-3)(x+1)=0, ∴x=或x=-1. 【点睛】 本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型. 22、1. 【解析】试题分析:设长方体的底面长为x米,则底面宽为(x-2)米,由题意,得x(x-2)×1=15,解得: =5, =-3(舍去).底面宽为5-2=3米.矩形铁皮的面积为:(5+2)(3+2)=35,这张矩形铁皮的费用为:20×35=1元.故答案为1. 考点:一元二次方程的应用. 23、(3)a=,方程的另一根为;(2)答案见解析. 【解析】(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可; (2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可. 【详解】(3)将x=2代入方程,得,解得:a=. 将a=代入原方程得,解得:x3=,x2=2. ∴a=,方程的另一根为; (2)①当a=3时,方程为2x=3,解得:x=3. ②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3. 当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3; 当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3. 综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3. 考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用. 24、(1)-;(2)-. 【分析】(1)根据二次根式混合运算法则计算即可; (2)代入特殊角的三角函数值,根据0指数幂、负整数指数幂、二次根式及绝对值的运算法则计算即可. 【详解】(1)() =(2-2)-6+6× =22-6+ =6-4-6+ =-. (2)-14 + = = =- 【点睛】 本题考查实数的混合运算,熟练掌握运算法则并熟记特殊角的三角函数值是解题关键. 25、(1)证明见解析;(2)点P的坐标为(2,4);(3)点Q的横坐标为:或. 【分析】(1)利用PB∥OC,即可证明三角形相似; (2)由一次函数解析式,先求点A、C的坐标,由△AOC∽△ABP,利用线段比求出BP,AB的值,从而可求出点P的坐标即可; (3)把P坐标代入求出反比例函数,设Q点坐标为(n,),根据△BQD与△AOC相似分两种情况,利用线段比联立方程组求出n的值,即可确定出Q坐标. 【详解】(1)证明:∵PB⊥ x轴,OC⊥x轴, ∴OC∥PB, ∴△AOC∽△ABP; (2)解:对于直线y=x+3, 令x=0,得y=3; 令 y=0,得x=-6 ; ∴A(-6,0),C(0,4), ∴OA=6,OC=3. ∵△AOC∽△ABP, ∴, ∵S△ABP=16,S△AOC=, ∴, ∴,即, ∴PB=4,AB=8, ∴OB=2, ∴点P的坐标为:(2,4). (3)设反比例函数的解析式为:y=, 把P(2,4)代入,得k=xy=2×4=8, ∴y=. 点Q在双曲线上,可设点Q的坐标为:(n,)(n>2), 则BD=,QD=, ①当△BQD∽△ACO时,, 即, 整理得:, 解得:或; ②当△BQD∽△CAO时,, 即, 整理得:, 解得:,(舍去), 综上①②所述,点Q的横坐标为:1+或1+. 【点睛】 此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键. 26、(1)点B的坐标是;(2) 【分析】(1)过点作轴,垂足为,则OA=OB=6,,解直角三角形即可; (2)可设抛物线解析式为,将A、B坐标代入即可. 【详解】解:(1)如图,过点作轴,垂足为,则. . 又∵OA=OB=6 ∴ 点的坐标是; (2)抛物线过原点和点、, 可设抛物线解析式为. 将A(6,0),B代入, 得, 解得:, 此抛物线的解析式为:. 【点睛】 本题考查的知识点是旋转的性质、求抛物线解析式、解直角三角形,利用旋转的性质得出点B的坐标是解此题的关键.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市 昌平区 北京 人大 附中 昌平 校区 2022 九年级 数学 第一 学期 期末 监测 模拟 试题 解析
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文