润滑介质及基体对不同厚度PTFE_PI-PAI涂层的摩擦性能.pdf
《润滑介质及基体对不同厚度PTFE_PI-PAI涂层的摩擦性能.pdf》由会员分享,可在线阅读,更多相关《润滑介质及基体对不同厚度PTFE_PI-PAI涂层的摩擦性能.pdf(15页珍藏版)》请在咨信网上搜索。
1、Feb.CHINASURIGINEERING20242024年2 月Vol.37No.1国面中表程第37 卷第1期doi:10.11933/j.issn.1007-9289.20230313001润滑介质及基体对不同厚度PTFE/PI-PAI涂层的摩擦性能涂传坤1曹均1,2朱曼昊?叶佩青1,3谢京杉 4(1.宁波大学机械工程与力学学院宁波315211;2.西南交通大学材料科学与工程学院成都315016;3.清华大学机械工程学院完北京100084;4.中原内配集团轴瓦股份有限公司孟州454750)摘要:船舶发动机轴瓦在受到炮弹攻击后处于极端工况,造成轴瓦失效破坏。传统的电镀镀层和磁控溅射薄膜因存
2、在高污染、高成本等缺点,目前函须寻求新的解决方案来提高轴瓦在极端工况下的耐磨性能。针对轴瓦因炮击而处于极端工况,设计了ZrO2填充PTFE/PI-PAI的涂层材料,采用液体喷涂工艺在A370铝合金和CuPb22Sn2.5铜合金基体表面制备三种不同厚度涂层,研究涂层在不同润滑介质下的摩擦学性能。结果表明,涂层的摩擦学性能受到涂层硬度、润滑介质及基体支撑作用影响,涂层的硬度及弹性模量随厚度的增加呈现递减的趋势。涂层越厚,基体的支持作用越小。在油润滑工况下,铜合金基体上涂层摩擦因数及磨损率均小于铝合金,润滑油是涂层摩擦性能最主要影响因素。在海水工况下,涂层主要表现为磨粒磨损,并出现明显的犁沟现象。铜
3、合金基体上涂层的摩擦因数高于铝合金,海水腐蚀和高频往复摩擦带来的冲刷作用是摩擦性能主要影响因素。在干摩擦工况下,涂层以黏着磨损为主。涂层的硬度受到基体支撑的影响,高频往复运动中硬质对磨球与硬质基体夹击软质涂层和接触压力是摩擦性能主要影响因素。通过涂层与合金摩擦因数对比,可知30 m涂层能够大幅度地降低轴瓦材料的摩擦因数,有利于提高船舶发动机轴瓦在极端工况的摩擦学性能。阐明了基体对不同厚度自润滑涂层的支撑机理,分析了涂层在极端工况下受到轰击后的摩擦学性能,确定了船舶发动机轴瓦涂层的最佳设计厚度。关键词:涂层厚度;润滑介质;基体支撑;摩擦行为;磨损机制中图分类号:TG156;T B114Tribo
4、logical Properties of PTFE/PI-PAI Coatings with Different Thicknessunder Different Lubricating Medium and SubstrateTU Chuankun ICAO Jun I1,2ZHU MinghaoYE Peiqing1,3XIE Jingshan4(1.College of Mechanical Engineering and Mechanics,Ningbo University,Ningbo 315211,China;2.College of Materials Science and
5、 Engineering,Southwest Jiaotong University,Chengdu 315016,China;3.College of Mechanical Engineering,Tsinghua University,Beijing 100084,China;4.Zhongyuan Inner Parts Group Bearing Co.,Ltd.,Mengzhou 454750,China)Abstract:As ships are attacked by shells or come in contact with reefs,the engine compartm
6、ent experiences extreme working基金项目:国家自然科学基金(52 0 0 52 7 3);浙江省自然科学基金(LQ20E050007);宁波市揭牌指挥重点研发计划(2 0 2 2 Z050);湖南省科技创新项目(2 0 2 2 RC4016)。Fund:National Natural Science Foundation of China(52005273);Provincal Natural Science Foundation of Zhejiang(LQ20E050007);Ningbo Key Researchand Development Progra
7、m of Unveiling and Commanding(2022Z050);Hunan Science and Technology Innovation Project(2022RC4016).收稿日期:2 0 2 3-0 3-13;修改日期:2 0 2 3-0 4-18;接受日期:2 0 2 3-0 8-30;上线日期:2 0 2 3-12-15。Received March 13,2023;Revised April 18,2023;Accepted in revised form August 30,2023;Available online December 15,2023.引用
8、格式:涂传坤,曹均,朱曼昊,等。润滑介质及基体对不同厚度PTFE/PI-PAI涂层的摩擦性能 .中国表面工程,2 0 2 4,37(1):2 2 5-2 39.Citation format:TU Chuankun,CAO Jun,ZHU Minghao,et al.Tribological properties of PTFE/PI-PAI coatings with different thickness under differentlubricating medium and substrateJ.China Surface Engineering,2024,37(1):225-239
9、.226面中2024年表程国conditions,such as oil lubrication,seawater corrosion,and even dry sliding wear.To improve the tribological performance of a shipsengine bearing under extreme working conditions and ensure the smooth return of the ship afer damage,we designed a polymercoating consisting of PTFE/PI-PAI
10、and ZrO2.Three different coatings of different thicknesses were prepared using liquid spraying onthe surfaces of the A370 aluminum alloy and CuPb22Sn2.5 copper alloy.The tribological performance of these coatings with differentlubricating media was studied.The performance of the coatings was evaluat
11、ed based on their physical phase composition,microstructure morphology,element distribution,bond strength between the coating and substrate,nano-hardness,Youngs modulus,and frictional wear behavior.The tribological properties of the coatings were investigated using various lubricating media.The resu
12、ltsshowed that the physical phase and solid distribution of the coatings were not influenced by variations in the coating thickness.Thehardness and elastic moduli of the coatings decreased with increasing coating thickness,and the hardness of the coating on the copperalloy substrate was higher than
13、that on the aluminum alloy substrate.The thicker the coating,the less supported the action of the hardsubstrate.Compared with coating under 20 m thickness,the supporting effect of coating under 50 m thickness on the aluminumalloy and copper alloy substrate was increased by 1 297.78%and 1 767.98%,res
14、pectively.The coefficients of friction(CoFs)andwear rates of the coatings on the copper alloy substrate under oil-lubricated conditions were lower than those on the aluminum alloysubstrate.The wear rate of the coatings decreased with increasing coating thickness.The maximum variation in the CoFs of
15、thecoatings with different thicknesses on different substrates was only 3.33%.Oil lubrication is a key factor resulting in these frictionalproperties.Abrasive wear and significant plowing were observed under corrosive seawater conditions.The CoFs of the coatings on thecopper alloy substrate were hig
16、her than those of the coatings on the aluminum alloy substrate.Seawater corrosion and the effect ofseawater scouring during high-frequency reciprocating frictional movements were the main factors influencing frictional performance.The wear mechanism of the coating under dry sliding was primarily adh
17、esive wear.The coating entered stable wear at 600 s under drysliding wear,which occurred later than under seawater conditions.Adhesive wear is the main reason for this observation.Thehardness of the coating was influenced by the supporting action of the substrate.The tribological performance of the
18、copper alloycoating was better than that of the aluminum alloy coating.The pinch action from the high-frequency reciprocating motion of the hardgrinding ball to the soft coating on the hard substrate and the contact pressure were the main factors.The marine engine bearing hadthe best tribological pe
19、rformance under the coating with 30 m thickness prepared on the copper alloy substrate.Compared with theCoF of the copper substrate,the CoFs of the coatings under dry sliding wear and seawater decreased by 72.16%and 36.07%,respectively.The tribological performance of marine engine bearings under ext
20、reme conditions can be improved using this coating.Inthis study,the support mechanism from the substrate to self-lubricating coatings with different thicknesses was elucidated.Thetribological performance of the coating under extreme conditions was analyzed,and the optimum coating thickness on a mari
21、neengine bearing was determined.Keywords:coating thickness;lubricating medium;substrate support;frictional behavior;wear mechanism0前言船舰受到炮击后能够在一定时间内顺利返航是船员生命健康的重要保障之一。发动机是船舰最容易受到攻击的目标,当机舱受到攻击后,发动机轴瓦处于油润滑、海水腐蚀甚至空气冲击波造成的干摩擦状态,这对船舶安全返航增加了困难。铝合金、铜合金等高摩擦因数的合金是当前发动机轴瓦使用最普遍的材料 1-2 。ALIDOKHT等 3 研究表明,A356铝合金
22、在2 5N法向载荷下的室温干滑动摩擦因数为0.6 8 2。边培莹等 4 研究表明,ZL104铝合金在1.5N法向载荷下的平均干滑动摩擦因数为0.58 8。UNLU等 5 研究表明,铜合金在10 N载荷下的室温干滑动摩擦因数为0.7 9。MOAREF等 6 研究表明,铜合金在10 N载荷下的室温干滑动摩擦因数为0.813。为提高轴瓦摩擦性能,国内使用广泛的表面处理工艺是电镀技术 7-8 。ZOU等 9 在2 0 2 4铝合金上制备了电镀类金刚石薄膜,在2 N载荷和10 cm/s滑动速度下镀层的平均摩擦因数相比于基体下降了77.78%。R E ZA E I等 1 在A356铝合金上制备了50m厚度
23、的镍铝镀层,在15N载荷和0.1m/s滑动速度下,其平均摩擦因数相比基体下降了42.86%。BHA T 等 研究了在铜合金上制备Cu-Graphite镀层,在载荷为5N的干滑动摩擦工况下,其平均摩擦因数相比于基体下降了7 6.2 5%。WANG等 12 研究了在铜合金上制备Ti-A1镀层,在载荷为7.5N的干滑动摩擦工况下,其平均摩擦因227涂传坤,等:润滑介质及基体对不同厚度PTFE/PI-PAI涂层的摩擦性能第1期数相比基体下降了6 2.5%。以上研究表明电镀镀层能够提高轴瓦合金的摩擦学性能,但电镀溶液是高污染源,在“十四五”绿色生活生产要求下,轴瓦呕需绿色环保型表面处理技术。目前以美国辉
24、门、奥地利米巴及日本大丰工业为带头的轴瓦企业采用的是多聚物涂层技术,降低了轴瓦的磨损,延长了轴瓦的使用寿命。SUZUKI等 13 在AC8A铝合金表面制备了聚酰胺酰亚胺(PAI)填充尼龙和石墨的涂层,在5N载荷和0.1m/s滑动速度的油润滑工况下,其最低摩擦因数为0.0 2 2。ZHANG等 141利用二硫化钼和石墨填充聚酰亚胺(PI)在LY-12铝合金表面制备涂层,在12 0 N载荷和2 0 0 r/min滑动速度干摩擦工况下,其最低摩擦因数降至为0.141。JIANG等 15研究表明,在铜合金表面制备聚苯硫醚(PPS)涂层,在6.9 2 MPa接触应力和2 2 0 0 r/min滑动速度的
25、油润滑工况下,其最低摩擦因数为0.10 2。上述研究表明,多聚物涂层能够有效降低铝、铜合金的摩擦因数,但现有多聚物涂层是否能够满足船舰轴瓦面临的突发极端工况下的使用要求尚不明确,最佳涂层厚度也未指明。为此,以PI、环氧树脂(EP)、PA I 为黏结剂,以聚四氟乙烯(PTFE)和石墨(G)作为润滑填料,并添加氧化锆(ZrO2)硬质颗粒作为耐磨材料,设计润滑抗磨的多聚物涂层。采用液体喷涂技术,在轴瓦最常用的A370铝合金和CuPb22Sn2.5铜合金上制备三种不同厚度的涂层,并通过油润滑、海水腐蚀及干摩擦模拟极端工况考察新设计的涂层摩擦磨损性能。1试验1.1涂层材料和制备涂层材料详细信息如下:PI
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 润滑 介质 基体 不同 厚度 PTFE_PI PAI 涂层 摩擦 性能
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。