初二数学--等腰三角形与等边三角形-知识点与例题.doc
《初二数学--等腰三角形与等边三角形-知识点与例题.doc》由会员分享,可在线阅读,更多相关《初二数学--等腰三角形与等边三角形-知识点与例题.doc(4页珍藏版)》请在咨信网上搜索。
三角形 等腰三角形和等边三角形 等腰三角形的定义:有两边相等的三角形是等腰三角形相等的两个边称为这个三角形的腰 等腰三角形的性质:1.等腰三角形的两个底角相等。 (简写成“等边对等角”) 2.等腰三角形的顶角的平分线,底边上的中线,底边上的高的重合(简写成“等腰三角形的三线合一”) 3.等腰三角形的两底角的平分线相等。(两条腰上的中线相等,两条腰上的高相等) 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明) 7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴 等腰三角形的判定:1.在同一三角形中,有两条边相等的三角形是等腰三角形(定义) 2.在同一三角形中,有两个角相等的三角形是等腰三角形(简称:在同一三角形中,等角对等边)等边三角形定义:三条边都相等的三角形叫做等边三角形 等边三角形的性质:⑴等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。 ⑵等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一) ⑶等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。 ⑸等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)⑹等边三角形内任意一点到三边的距离之和为定值(等于其高) 等边三角形的判定: ⑴三边相等的三角形是等边三角形(定义) ⑵三个内角都相等(为60度)的三角形是等边三角形 ⑶有一个角是60度的等腰三角形是等边三角形 (4) 两个内角为60度的三角形是等边三角形 (5) 说明:可首先考虑判断三角形是等腰三角形。 (6) 等边三角形的性质与判定理解: (7) 首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。 例题解析 等腰三角形的性质应用及判定 【例1】(扬州中考)如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD. (1) 上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形) (2) 选择第(1)小题中的一种情形,证明△ABC是等腰三角形 A E B C O D E A B C D 【例2】如图,△ABC为等边三角形,延长BC到D,又延长BA到E,使AE=BD,连接CE,DE,求证:△CDE为等腰三角形 【例3】(福建中考)如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的个数有( ) ①DC平分∠BDE ②BC长为()a ③△BCD是等腰三角形 ④△CED的周长等于BC的长 A C B D B C E D B E C A.1个 B.2个 C.3个 D.4个 【例4】如图,△ABC是边长为1的正三角形,△BDC是顶角为120°的等腰三角形,以D为顶点作一个60°的∠MDN,点M,N分别在AB,AC上,则△AMN的周长是 A M N D B C 【例5】(重庆中考)已知一个等腰三角形两内角的度数比为1:4,则这个等腰三角形顶角的度数为( ) A.20° B.120° C.20°或120° D.36° 【例6】(双柏中考)等腰三角形两边长分别为4和9,则第三边长为 例7】如图,点O事等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD,则△COD是等边三角形;(1)当α为多少度时,△AOD是等腰三角形?(2)求证:△COD是等边三角形(3)当α=150°时,试判断△AOD的形状,并说明理由 等边三角形的性质应用及判定 【例8】(乐山中考)如图,在等边△ABC中,点D,E分别在边BC,AB上,BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数。 【例9】(黄冈中考)如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF。求证:BE=AF 【例10】(天津中考)如图,△DAC和△EBC均是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACD≌△DCB; ②CM=CN; ③AC=DN.其中正确结论的个数是 A.3个 B.2个 C.1个 D.0个 【例13】如图,点C在线段AB上,在AB的同侧作等边 三角形ACM和BCN,连 三角形ACM和BCN,连接AN,BN,若∠MBN=38°,则∠ANB的大小等于 。 【例14】(常州中考)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形,求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形 等腰直角三角形的性质应用及判定 【例15】如图,在Rt△ABC中,∠B=90°,∠ACB=60°,D是BC延长线上一点,且AC=CD,则BC:CD= 【例16】已知,如图,AB是等腰直角三角形ABC的斜边,AD是 ∠A的平分线,求证:AC+CD=AB 【例17】(枣庄中考)两个全等的含30°,60°的三角板ADE和三角板ABC,如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC,试判断△EMC的形状,并说明理由 练习题 1.下列两个命题:①如果两个角是对顶角,那么这两个角相等;②如果一个等腰三角形有一个内角是60°,那么这个等腰三角形一定是等边三角形,则以下结论正确的是( ) A.只有命题①正确 B.只有命题②正确 C.命题①、②都正确 D.命题①、②都不正确 2. (四川中考)若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角为( ) A.32.5° B.57.5° C.65°或57.5° D.32.5°或57.5° 3.如图,在△ABC中,AD⊥BC于D,请你再添加一个条件,就可以确定△ABC是等腰三角形。你添加的条件是 4.在Rt△ABC中,∠C=90°,∠A=30°,BC+AB=6cm,则AB= cm 5.已知:等边△ABC中,如图,E为AB上任意一点,以CE为斜边作等边△CDE,连结AD,则有AD∥BC,上述结论还成立吗?答 4 / 4- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 数学 等腰三角形 等边三角形 知识点 例题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文