一次函数基础测验.doc
《一次函数基础测验.doc》由会员分享,可在线阅读,更多相关《一次函数基础测验.doc(8页珍藏版)》请在咨信网上搜索。
一次函数复习 基础知识导航 1、一次函数y=kx+b(k,b为常数,k≠0)的性质 (1)k的正负决定直线的倾斜方向; ①k>0时, ; ②k﹤O时, . (2)b的正、负决定直线与y轴交点的位置; ①当b>0时, ;②当b<0时, ; ③当b=0时, . (3)由于k,b的符号不同,直线所经过的象限也不同;并会画出草图 ①当k>0,b>0时, ; ②当k>0,b﹥O时, ; ③当k﹤O,b>0时, ; ④当k﹤O,b﹤O时, . 4)若两直线平行 ,则k1 k2 一、一次函数概念 1.已知y=(m-2)x是正比例函数,则m= . 2.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k=_______时,它是正比例函数. 3.在同一坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,通过点(-1,0)的是________,相互平行的是_______,交点在y轴上的是_____.(填写序号) 4.函数y=kx+b的图象平行于直线y=-2x,且与y轴交于点(0,3),则k=______,b=_______. 5.已知y+5与3x+4成正比例,当x=1时,y=2. (1)求y与x之间的函数关系式; (2)求当x=1时的函数值. 二、一次函数图像和性质 1. 已知正比例函数y=kx(k≠0)的图象经过第二、四象限,则( ) A.y随x的增大而减小 B.y随x的增大而增大 C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小 D.不论x如何变化,y不变 2、如图11-59所示,若直线l是一次函数y=kx+b的图象,则( ) A.k>0,b>0 B.k>0,b<OC.k<O,b<OD.k<O,b>0 3.若直线y=kx+b经过第二、三、四象限,则k ,b ;若经过第一、三、四象限,则k ,b ;若经过第一、二、三象限,则k ,b . 4.已知直线y=kx+b过点A(x1,y1)和B(x2,y2),若k<0,且x1<x2,则y1 y2(填“>”或“<”号) 5.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是 6.将直线y=x+4向下平移2个单位,得到的直线的解析式为 . 7.无论m为何实数,直线y=2x+m与y=-x+4的交点不可能在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 8.若一次函数y=ax+1-a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则│a-1│+=______. 9.甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:①这是一次________米赛路;②甲、乙两人先到达终点的是_________;③在这次赛跑中甲的速度为________,乙的速度为________. 10.如图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量只要不超过_________千克,就可以免费托运. 11.已知一次函数y=(3-k)x-2k2+18. (1)k为何值时,它的图象经过原点? (2)k为何值时,它的图象经过点(0,-2)? (3)k为何值时,它的图象与y轴的交点在x轴的上方? (4)k为何值时,它的图象平行于直线y=-x? (5)k为何值时,y随x的增大而减小? 12.已知函数y1=kx-2和y2=-3x+b相交于点A(2,-1) (1)求k、b的值,在同一坐标系中画出两个函数的图象. (2)利用图象求出:当x取何值时有:①y1<y2;②y1≥y2 (3)利用图象求出:当x取何值时有:①y1<0且y2<0;②y1>0且y2<0 三、待定系数法求函数解析式 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k与b的值,得到函数表达式. 1.请你写出一个经过点(1,1)的函数解析式 . 2.在函数中,当自变量满足 时,图象在第一象限. 3.一个函数的图象经过点(1,2),且y随x的增大而增大而这个函数的解析式是(只需写一个) 4.已知直线和两坐标轴相交所围成的三角形面积为24,求k值。 5.已知直线y=3x+b和两坐标轴相交所围成的三角形面积为24.求b值 6.如果点A(—2,a)在函数y=x+3的图象上,那么a的值等于 例1 拖拉机耕地时,每小时的耗油量假定是个常量,已知拖拉机耕地2小时油箱中余油28升,耕地3小时油箱中余油22升. (1)写出油箱中余油量Q(升)与工作时间t(时)之间的函数关系式; (2)画出函数图象; (3)这台拖拉机工作3小时后,油箱中的油还够拖拉机继续耕地几小时? 例2 已知一次函数y=kx+b(k≠0)的图象经过点A(-3,-2)及点B(1,6),求此函数关系式,并作出函数图象. 例3.已知一次函数y=(2m+4)x+(3-n). ⑴当m、n是什么数时,y随x的增大而增大? ⑵当m、n是什么数时,函数图象经过原点? ⑶若图象经过一、二、三象限,求m、n的取值范围. 练习1.如图11-55所示,一次函数的图象与x轴、y轴分别相交于A,B两点,如果A点的坐标为A(2,0),且OA=OB,试求一次函数的解析式. 2.已知一次函数y= kx+b的图象经过点(-1,1)和点(1,-5),求: (1)函数的解析式; (2)将该一次函数的图象向上平移3个单位,直接写出平移后的函数解析式. 3.直线与y轴交于A点,与x轴的正半轴交于B点。等边三角形OCD的顶点C、D分别在线段AB、OB上,且OD=DB,求k的值. y A C B D O x 4.如图,直线y=kx-6经过点A(4,0),直线y=-3x+3与x轴交于点B,且两直线交于点C. (1)求k的值; (2)求△ABC的面积. 5.如图,一次函数y=的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90∘,求过B、C两点直线的解析式. 6.直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2). (1)求直线AB的解析式; (2)若直线AB上一点C在第一象限,且,求点C坐标. 7.已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0). (1)求直线L1的解析式; (2)若△APB的面积为3,求m的值. 8.如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C. (1)求点D的坐标; (2)求直线L2的解析表达式; (3)求△ADC的面积; (4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标. 四、一次函数的应用 1、一次函数与二元一次方程 例1 利用图象解二元一次方程组 2、函数y=-x与函数y=x+1的图象的交点坐标为( ) 3、.直线y=x+4和直线y=-x+4与x轴围成的三角形的面积是( ) 4.已知直线l1:y=k1x+b1和直线l2:y=k2x+b2 (1)当__________时,l1与l2相交于一点,这个点的坐标是________. (2)当__________时,l1∥l2,此时方程组的解的情况是________. (3)当__________时,l1与l2重合,此时方程组的解的情况是________. 5、已知两直线y1=2x-3,y2=6-x (1)在同一坐标系中作出它们的图象. (2)求它们的交点A的坐标. (3)根据图象指出x为何值时,y1>y2;x为何值时,y1<y2. (4)求这两条直线与x轴所围成的△ABC的面积. 变式训练 1、(2006,江西省)已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0). (1)求直线L1的解析式; (2)若△APB的面积为3,求m的值. 2、如图所示,直线L1的解析表达式为y=-3x+3,且L1与x轴交于点D.直线L2经过点A,B,直线L1,L2交于点C. (1)求点D的坐标; (2)求直线L2的解析表达式; (3)求△ADC的面积; (4)在直线L2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标. x O C A B y yyyyyyyyy y 3、如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(3,0)、(0,5)。 (1)直接写出B点坐标; (2)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1∶1两部分,求直线CD的解析式; (3)若过点C的直线CD交AB边于点D,且把矩形OABC的周长分为1∶3两部分,求直线CD的解析式; 2、一次函数解决实际问题 例1 一报亭从报社订购某晚报的价格是每份0.7元,销售价是每份1元,卖不掉的报纸还可以以每份0.2元的价格退回报社,在一个月内(以30天计算)有20天每天可以卖出100份,其余10天每天只能卖出60份,但每天报亭从报社订购的份数必须相同,若以报亭每天从报社订购报纸的份数为自变量x,每月所获利润为y(元). (1)写出y与x之间的函数关系式,并指出自变量x的取值范围; (2)报亭应该每天从报社订购多少份报纸,才能使每月获得的利润最大?最大利润是多少? 变式训练 1、 (2004·四川)某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件. (1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式; (2)若要使车间每天所获利润不低于24000元,你认为至少要派多少名工人去制造乙种零件才合适? 例2 2、 (2004·河北)光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表. 每台甲型收割机的租金 每台乙型收割机的租金 A地区 1800元 1600元 B地区 1600元 1200元 (1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x之间的函数关系式,并写出x的取值范围; (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议. 变式训练 1、A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少? 例3 (2004·南通)小刚为书房买灯,现有两种灯可供选择,其中一种是9瓦(即0.009千瓦)的节能灯,售价49元/盏,另一种是40瓦(即0.04千瓦)的白炽灯,售价18元/盏,假设两种灯的照明亮度一样,使用寿命都可以达到2800小时,已知小刚家所在地的电价是每千瓦·时0.5元. (1)设照明时间是x小时,请用含x的代数式分别表示用一盏节能灯和一盏白炽灯的费用y(元);(注:费用=灯的售价+电费) (2)小刚想在这两种灯中选购一盏; ①当照明时间是多少时,使用两种灯的费用一样多? ②分别画出两个函数的图象,利用函数图象判断: a.照明时间在什么范围内,选用白炽灯费用低; b.照明时间在什么范围内,选用节能灯费用低. (3)小刚想在这两种灯中选购两盏. 假定照明时间是3000小时,使用寿命就是2800小时,请你帮助他设计一种费用最低的选灯方案,并说明理由. 变式训练 1 已知A地在B地的正南方向3km处,甲、乙两人同时分别从A,B两地向正北方向匀速直线前进,他们到A地的距离s(km)与所用时间t(h)之间的函数关系的图象如图11-62所示,当他们走了3h的时候,他们之间的距离是多少千米? 2、某商场计划投入一笔资金采购一批紧俏商品,经过市场调查发现,如果月初出售可获利15%,并可用本利和再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付仓储费用700元,问他如何销售获利较多? 3、(2003·黄冈)在全国抗击“非典”的斗争中,黄城研究所的医学专家们经过日夜奋战,终于研制出一种治疗非典型性肺炎的抗生素.据临床观察:如果成人按规定的剂量注射这种抗生素,注射药液后每毫升血液中的含药量y(微克)与时间t(时)之间的关系近似地满足如图11-44所示的折线. (1)写出注射药液后每毫升血液中含药量y与时间t之间的函数关系式及自变量的取值范围; (2)据临床观察,每毫升血液中含药量不少于4微克时,控制“非典”病情是有效的,如果病人按规定的剂量注射该药液后,那么这一次注射的药液经过多长时间后控制病情开始有效?这个有效时间有多长? (3)假设某病人一天中第一次注射药液是早晨6点,问怎样安排此人从6:00到20:00注射药液的时间,才能使病人的治疗效果最好? 4、(2005,黑龙江省)某企业有甲,乙两个长方体的蓄水池,将甲池中的水以6m3/h的速度注入乙池,甲,乙两个蓄水池中水的深度y(m)与注水时间x(h)之间的函数图像如图所示,结合图像回答下列问题: (1)分别求出甲,乙两个蓄水池中水的深度y与注水时间x之间的函数关系式; (2)求注水多长时间甲,乙两个蓄水池水的深度相同; (3)求注水多长时间甲,乙两个蓄水池的蓄水池相同. 8 / 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次 函数 基础 测验
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文