八年级数学下册-第六章-平行四边形创新题赏析北师大版.doc
《八年级数学下册-第六章-平行四边形创新题赏析北师大版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册-第六章-平行四边形创新题赏析北师大版.doc(8页珍藏版)》请在咨信网上搜索。
八年级数学下册 第六章 平行四边形创新题赏析北师大版 八年级数学下册 第六章 平行四边形创新题赏析北师大版 年级: 姓名: 8 平行四边形创新题赏析 平行四边形部分是初中数学的重点内容,在各地中考试卷中都占有一定的分量。随着课程改革的进一步深入,出现了许多构思新、重素质、考能力的创新题型,令人耳目一新;它对培养和考查学生的发散能力和综合能力大有裨益。现例举中考题几例并加以归类浅析,希望对同学们有所启发。 一、补充说理型 例1. 如图1,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G。 (1)求证:AF=GB; (2)请你在已知条件的基础上再添加一个条件,使得△EFG为等腰直角三角形,并说明理由。 图1 解析:(1)∵四边形ABCD是平行四边形 ∴AB∥CD,∴∠AGD=∠CDG 又∵DG是∠ADC的平分线 ∴∠ADG=∠GDC ∴∠AGD=∠ADG ∴AD=AG 同理可得:BF=BC 在平行四边形ABCD中,AD=BC ∴AG=BF ∴AF=GB (2)可以添加条件∠ADC=90°或四边形ABCD是矩形 说理如下:∵四边形ABCD是矩形 ∴∠ADC=∠BCD=90° 又DG、CF平分∠ADC和∠BCD ∴∠EDC=∠ECD=45° ∴∠AGD=∠BFC=45°,∠FEG=90° 即△EFG是等腰直角三角形。 点评:此例把解题的主动性交给学生,让学生添加条件再说理,给学生创造了一个适度的思维空间;富有创意,活而不难,有利于激发学生的信心和探索欲望。 二、判断类比型 例2. 已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q。 (1)若四边形ABCD如图2-1,判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”)。 甲:顺次连接EF、FG、GH、HE一定得到平行四边形;( ) 乙:顺次连接EQ、QG、GP、PE一定得到平行四边形。( ) (2)请选择甲、乙中的一个,证明你对它的判断。 (3)若四边形ABCD如图2-2,请你判断(1)中的两个结论是否成立? 解析:(1)甲的判断是正确的;乙的判断是错误的。 (2)对甲说理如下: 连接EF、FG、GH、HE(如图2-3) ∵E、F分别是AB、BC的中点 ∴EF是△ABC的中位线 同理,HG∥AC ∴EF∥HG,EF=HG ∴四边形EFGH是平行四边形 对乙可举反例说明:如图2-4,在矩形ABCD中,顺次连接EQ、QG、GP、PE得到一条线段,而不是一个平行四边形。 (3)对图2-2,类似于(1)中的结论甲、乙都成立。 点评:此例通过设计问题串,让学生经历判断、归纳,从而建立认识,再作判断;体现了新课程下命题者关注学生思维过程的良苦用心。 三、猜想证明型 例3. 已知:如图3,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF。请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。 图3 (1)连接_____________; (2)猜想_____________=_____________; (3)证明 解析:连接AF,猜想AF=AE。 证明:连接AC,交BD于O ∵四边形ABCD是菱形,∴AC⊥BD于O,DO=BO ∵DE=BF,∴EO=FO ∴AC垂直平分EF ∴AF=AE 点评:此例要求学生经历探索—猜想—证明的思维过程,这种螺旋上升的结构符合学生的心理特征和认知规律。让考生在试卷上留下思维的痕迹,能创造性地激活学生的思维。 四、运动探究型 例5. 如图4,已知平行四边形ABCD及四边形外一直线,四个顶点A、B、C、D到直线的距离分别为a、b、c、d。 (1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论。 (2)现将向上平移,你得到的结论还一定成立吗?请分情况写出你的结论。 解析:(1) 证明:连接AC、BD,且AC、BD相交于点O,为点O到的距离 图4 ∴为直角梯形的中位线 同理: (2)不一定成立。 分别有以下情况: 直线过A点时,; 直线过A点与B点之间时,; 直线过B点时,; 直线过B点时与D点之间时,; 直线过D点时,; 直线过C点与D点之间时,; 直线过C点时,; 直线过C点上方时,。 点评:将静态的数学与动态的变化结合起来,给数学以生命,让学生在图形的变化中理解体验变与不变。本题以“平行四边形”、“线”为背景,在“动”中开拓学生视野,拓宽学生的思维空间,在“静”中寻找关系,从而找到解决问题的途径。该题较好地考查了学生观察、分析、判断论证能力和探究创新能力;有利于培养学生严谨的思维习惯和缜密的治学态度。 五、图形设计型 例5. 在△ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后,用得到的△AEF和四边形EBCF可以拼成平行四边形EBCP,剪切线与拼图如图示1,仿上述的方法,按要求完成下列操作设计,并在规定位置画出图示。 图示1 (1)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼成矩形,剪切线与拼图画在图示2的位置; (2)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼成菱形,剪切线与拼图画在图示3的位置; (3)在△ABC中,增加条件_____________,沿着_____________一刀剪切后可以拼成正方形,剪切线与拼图画在图示4的位置; (4)在△ABC(AB≠AC)中,一刀剪切后也可以拼成等腰梯形,首先要确定剪切线,其操作过程(剪切线的作法)是____________________________ 然后,沿着剪切线一刀剪切后可以拼成等腰梯形,剪切线与拼图画在图示5的位置。 解:(1)方法一:∠B=90°,中位线EF,如图示2-1。 方法二:AB=AC,中线(或高)AD,如图示2-2。 (2)AB=2BC(或者∠C=90°,∠A=30°),中位线EF,如图示3。 (3)方法一:∠B=90°且AB=2BC,中位线EF,如图示4-1。 方法二:AB=AC且∠BAC=90°,中线(或高)AD,如图示4-2。 (4)方法一:不妨设∠B>∠C,在BC边上取一点D,作∠GDB=∠B交AB于G,过AC的中点E作EF∥GD交BC于F,则EF为剪切线,如图示5-1。 方法二:不妨设∠B>∠C,分别取AB、AC的中点D、E,过D、E作BC的垂线,G、H为垂足,在HC上截取HF=GB,连接EF,则EF为剪切线,如图示5-2。 方法三:不妨设∠B>∠C,作高AD,在DC上截取DG=DB,连接AG,过AC的中点E作EF∥AG交BC于F,则EF为剪切线,如图示5-2。 点评:重视提高动手操作能力和实践能力,是素质教育新课程的切入点。此类题设计新颖,不落俗套,为考生画图操作、类比联想、反思探究提供了自由发挥、自主探究的广阔思维空间;对进一步理解和应用所学知识,发展创新能力、实践能力、操作能力大有裨益;让学生在具体的操作情境中,领悟数学的发展与形成的真谛。 初三中考作业本有这样一道题:如图所示,已知四边形纸片ABCD,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片,如果限定裁剪线有两条,能否做到:____(选填"能"或"不能"),请确定裁剪线的位置,并说明拼接方法:若填"不能",请简要说明理由. 拿到此题,学生们感觉无从下手.仔细分析此题,此题涉及到如何剪,如何拼的问题,因而我作了如下的解题分析. 一.寻找解题思路. (1)由于四边形内角和为3600,因而可以将四个内角拼成一个周角,可以进行平面镶嵌. (2)由于拼成的四边形是平行四边形,因而必须注意边长的特殊性,可以取各边的中点. 在找到思路的基础上,我们就可动手裁剪--沿对边的中点剪开,分割成四部分. 二.如何拼凑是本题的难点,关键是不能将剪下的图形弄乱.拼时以其中一块图形不动,抓相等的边拼在一起,以相临两边的中点为旋转中心将其中两块图形转1800,不相临的第三块图形平移到空缺处. 三.如何说明它是平行四边形. (1)必须说明三点共线.可用两角之和为1800. (2)必须说明它是平行四边形.可用角的关系证明两组对边平行. 经过以上的分析,裁剪,拼凑,证明,才可完整的完成此题.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 第六 平行四边形 创新 赏析 北师大
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文