国内物流需求预测方法文献综述.doc
《国内物流需求预测方法文献综述.doc》由会员分享,可在线阅读,更多相关《国内物流需求预测方法文献综述.doc(20页珍藏版)》请在咨信网上搜索。
1、国内物流需求预测方法文献综述 作者: 日期:20 个人收集整理 勿做商业用途国内物流需求预测方法文献综述 (河北工程大学 管理科学与工程 阮俊虎)物流需求是指一定时期内社会经济活动对生产、流通、消费领域的原材料、半成品和成品、商品以及废旧物品、废旧材料等的配置作用而产生的对物在空间、时间和费用方面的要求,涉及运输、库存、包装、装卸搬运、流通加工以及与之相关的信息需求等物流活动的诸方面1。物流需求的度量可以采用价值量和实物量两种度量体系。实物量意义上的物流需求主要表现为不同环节和功能的具体作业量,如货运量、库存量、加工量、配送量等;价值量意义上的物流需求是所有物流环节全部服务价值构成的综合反映,
2、如物流成本、物流收入、供应链增值等2。物流需求预测是根据物流市场过去和现在的需求状况,以及影响物流市场需求变化的因素之间的关系,利用一定的判断、技术方法和模型,对物流需求的变化及发展趋势进行预测。国内外许多专家和学者都对物流需求的预测进行了研究,提出不同的预测方法和手段。物流预测方法可以分为定性预测方法(如德尔菲法和业务人员评估法等)和定量预测方法,但多数是定量预测方法,因此,本文主要是对国内物流需求定量预测方法进行综述,归为时间序列预测方法、因果关系预测方法、组合预测方法等三类.1 时间序列预测方法综述时间序列预测方法是依据从历史数据组成的时间序列中找出预测对象的发展变化规律,以此作为预测依
3、据。常用的时间序列预测模型有增长率法、移动平均法、指数平滑法、随机时间序列模型、灰色模型、以及在经济领域已经被广泛应用的混沌与分形等。增长率法指根据预测对象在过去的统计期内的平均增长率,类推未来某期预测值的一种简便算法。该预测方法一般用于增长率变化不大,或预计过去的增长趋势在预测期内仍将继续的场合。刘劲等3(2002)在利用增长率系数法对百色地区港口货运量进行了逐一分析。移动平均法是用一组最近的实际数据值来预测未来一期或几期内产品的需求量的一种常用方法.当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。根据预测时使用的各元素的权重不同,移动平均法
4、可以分为:简单移动平均和加权移动平均。杨荣英等4(2001)在讨论移动平均值的基础上,提出了移动平均线方法,并介绍了运用移动平均线进行物流预测的方法。李海建等5(2003)利用二次移动平均线模型对芜湖市物流业发展的规模进行了预测.指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影
5、响程度,即随着数据的远离,赋予逐渐收敛为零的权数。韦司滢等6(1999)将指数平滑法等其他多种方法应用在三峡移民工程建材配送决策支持系统中。黄荣富等7(2003)、张云康等8(2008)在进行指数平滑法预测的基础上进行了物流需求多种方法组合预测.随机时间序列模型就是指在所研究对象的一组实测时间序列的基础上,通过各种数学的分析处理手段,寻找序列变化特征、发展趋势与规律,进而对未来某时刻研究对象的状态做出估计。常用模型有:自回归(AR)模型、移动平均(MA)模型、自回归移动平均(ARMA)模型、求和自回归移动平均(ARIMA)模型等。黄丽9(2004)利用随机时间序列模型对物流需求预测进行了专题研
6、究。灰色模型(Grey Model,简称GM)是一种以对时间序列进行研究分析,并建立方程,将无规律的原始数列经过转换,使之成为较有规律的生成数列后再建模用于预测的预测方法.赖一飞等10(2000)建立灰色系统预测模型,并对金沙江货类的流量流向及过坝货运量进行分析预测。张存禄等11(2000)利用GM(1,1)模型对武汉地区的物流发展水平进行了灰色预测。张鹏等12(2001)将灰色模型应用到公路物流预测中。林桦等13(2001)、刘芳等14(2005)、黄智星等15(2007)、柴大胜等16(2007)以物流园区为研究对象,利用灰色模型对其货流量等进行了预测。林小平等17(2003)利用灰色系统
7、理论,建立了成都双流机场货、邮吞吐量的预测模型。并通过实际数据与预测结果的比较,证明灰色模型对于双流机场货、邮吞吐量的预测具有较高的精度。何国华18(2008)利用灰色预测模型对区域物流需求进行了研究。潘英英19(2008)运用灰色系统模型,对广西物流中心货运需求量进行了动态预测。另外,还有学者针对灰色预测模型的不足,对其进行了改进,并将其应用到物流需求预测中.如:周茵20(2007)针对GM(1,1)模型对离散度大的数据预测精度差的缺陷,将残差灰色预测模型应用到物流货运量预测中;吴振宁等21(2004)、王冠奎等22(2007)、胡云超等23(2007)利用马尔可夫链对灰色模型进行了改进,并
8、将其应用到物流需求预测中。混沌是决定论系统所表现的随机行为的总称,根源在系统内的非线性交叉耦合作用,是一种回复性非周期运动。分形论是以复杂事物为研究对象的,包括线性分形和非线性分形。混沌与分形经常被用于复杂系统中,国内学者也有将其应用到物流需求的预测中。如:毛良伟24(2003)将混沌动力学应用到宏观物流预测中;杨瑞等25(2005)比较了现代常用的公路货运量预测方法的优缺点,研究了混沌理论对公路货运量的预测基本原理,构思短中长期货运量预测方法的可行性,并提出了研究方法和途径;李红启26(2003)论证了分形理论用于铁路货运量分析的可行性;聂伟27(2007)在已有研究的基础上,提出了一种新的
9、分形预测模型等长度递补变维分形模型,并将其应用到我国货运量及其构成预测中。2 因果关系预测方法综述因果关系预测方法是依据历史资料找出预测对象的变量与其相关事物的变量关系,建立相应的因果预测模型,利用事物发展的因果关系来推断事物发展趋势的预测方法。物流需求属于派生需求,它是由经济发展本身带来的,与经济的发展密切相关,随着经济总量、产业结构、资源分布等改变,物流需求量、需求结构和层次也随着发生变化28,因此,许多学者利用有关经济的各项指标来预测物流需求,常用的模型有弹性系数法、重力模型法、线性回归模型、神经网络模型、支持向量机模型等。弹性系数法是在对一个因素发展变化预测的基础上,通过弹性系数对另一
10、个因素的发展变化作出预测的一种间接预测方法29。乔向明等30(2004)以十年时间序列数据为依据,采用弹性系数法,对我国公路客货运量进行中期预测研究.李慧等31(2006)选取交通区汽车保有量、客货运输量、通道交通量统计资料与国内生产总值作为弹性系数指标,进行回归确定弹性系数,对资泸路(省道207 线)威远段改造工程工可交通量进行了预测。于龙年32(2008)给出了物流量预测的两种方法德尔菲法和弹性系数法.曹晓飞等33(2008)结合北京经济发展趋势,运用弹性系数法对机动车保有量进行了预测.重力模型法认为区与区之间的交通分布受到地区间距离、运行时间、费用等所有交通阻抗的影响,即区与区之间的出行
11、分布同各区对出行的吸引成正比,而同区之间的交通阻抗成反比(该模型与牛顿万有引力公式相类似,并因此而得名)。蒋仁才34(1987)利用重力模型对铁路货流分布进行了预测。詹燕等35(2000)介绍了重力模型法的原理及其在交通分布预测中的应用前景,并通过实例比较了 Furness法和重力模型改进法的运用差别。蔡若松等36(2002)、杨天宝等37(2006)、肖文刚等38(2007)在交通预测的实际应用中对重力模型进行了改进。另外,还有学者提出逆向重力模型39、模糊重力模型40等,并将其利用到交通预测中。回归分析研究因变量对一个或多个自变量的依赖关系,其用意在于通过后者的已知值,去估计或预测前者的总
12、体均值(古扎拉蒂,1995).物流需求属于派生需求,它是由经济发展本身带来的,与经济的发展密切相关,文献28根据上海市经济指标数据得出了物流需求指标与其他指标的相关性系数矩阵,证明其间有极强的线性相关性。因此,许多学者将线性回归模型应用到物流需求预测中,如:王桂霞等41(2001)应用多元线性回归预测模型等对内蒙古交通运输货运量及货运周转量进行了预测;刘劲等3(2002)在右江那吉航运枢纽工程货运量预测中应用到多元回归模型;林洪 42(2002)、李慧43(2004)、王小萃44(2007)、陈智刚等45(2007)、杨琳等46(2007)、杨帅47(2007)、赵卫艳等48(2007)都将线
13、性回归模型应用到物流需求预测中.人工神经网络作为一种并行的计算模型,具有传统建模方法所不具备的很多优点,有很好的非线性映射能力。对被建模对象的先验知识要求不多,一般不必事先知道有关被建模对象的结构、参数、动态特性等方面的知识,只需给出对象的输入、输出数据,通过网络本身的学习功能就可以达到输入与输出的完全符合49-50。针对物流需求预测中存在着非线性性,国内许多学者将神经网络模型应用到物流需求预测中。张拥军等51(1999)从交通运输需求的角度描绘了交通运输需求与国民经济的一些主要经济变量的相关关系,基于这些相关关系建立了交通运输需求预测的神经网络模型,利用误差反向传播算法实现了由这些因素到运输
14、系统需求的复杂映射,并进行了实例验证分析.王隆基等52(2004)、牛忠远53(2006)、缪桂根54(2007)、耿勇等55(2007)、郭红霞等56(2007)针对传统物流预测方法的局限,研究了基于BP模型神经网络的物流预测方法,即依据历史数据建立BP神经网络然后进行训练形成物流预测模型。白晨明等57(2004)依据已有的内、外回归神经网络预测模型及其算法,利用它们的良好特性,提出了对角回归神经网络滚动预测模型及其机场物流预测系统。赵闯等58(2004)、后锐等59(2005)将广义神经网络应用到物流需求预测中.支持向量机(SVM)的基本思想是通过用内积函数定义的非线性变换将输入空间变换到
15、一个高维空间,在这个高维空间中寻找输入变量和输出变量之间的一种非线性关系.支持向量机有严格的理论基础,是基于结构风险最小化原则的方法,明显优于传统的基于经验风险最小化原则的常规神经网络方法。其算法是一个凸二次优化问题,保证找到的解是全局最优解,能较好的解决小样本、非线性、高维数等实际问题。问题的复杂度不取决于特征的维数,且具有良好的推广能力,正在成为继神经网络研究之后的研究热点。针对我国现阶段物流系统样本量少的具体状况以及神经网络模型的局限性,越来越多的学者将支持向量机应用到物流需求预测中。唐伟鸿等60(2005)采用基于时间序列的支持向量机进行了物流量预测。庞明宝等61, 62(2007,2
16、008)分别用非线性支持向量机和基于偏最小二乘支持向量机回归模型对区域物流量进行了预测研究。胡燕祝等63(2008)从物流与经济的关系着手分析,建立了基于支持向量回归机的物流需求预测模型。3 组合预测方法综述不同预测方法的精度和侧重点存在差异,因此可将几种预测方法按一定的比例结构进行组合预测.自从Bates和Granger在20世纪60年代首次提出组合预测理论以来,对组合预测方法的研究和应用发展很快,采用组合预测模型可以克服单一模型的局限性,尽可能提高预测的精度。吴守荣64(1999)利用灰色预测模型和回归模型组合模型对山东省公路机动车货运量及运力进行了预测。黄荣富等7(2003)以某港口近1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 国内 物流 需求预测 方法 文献 综述
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。