八年级数学下册-第18章-勾股定理18.2-勾股定理的逆定理教案沪科版.doc
《八年级数学下册-第18章-勾股定理18.2-勾股定理的逆定理教案沪科版.doc》由会员分享,可在线阅读,更多相关《八年级数学下册-第18章-勾股定理18.2-勾股定理的逆定理教案沪科版.doc(6页珍藏版)》请在咨信网上搜索。
八年级数学下册 第18章 勾股定理18.2 勾股定理的逆定理教案沪科版 八年级数学下册 第18章 勾股定理18.2 勾股定理的逆定理教案沪科版 年级: 姓名: 6 第18章 勾股定理 18.2 勾股定理的逆定理 【知识与技能】 1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理.2.探究勾股定理的逆定理的证明方法. 【过程与方法】 1.通过对勾股定理的逆定理的探索,经历知识的发现、发展和形成的过程; 2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用. 【情感态度】 1.通过用三角形的三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系; 2.通过对勾股定理的逆定理的探索,培养了学生的交流、合作的意识和严谨的学习态度.同时感悟勾股定理和逆定理的应用价值. 【教学重点】 证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题. 【教学难点】 理解勾股定理的逆定理的推导. 一、创设情境,导入新课 在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢? 【实验观察】 用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用三角板量出最大角的度数.可以发现这个三角形是直角三角形.(这是古埃及人画直角的方法)为什么这样画出来的三角形是直角三角形呢? 【教学说明】 通过实验观察,使学生对所要学习的内容有一个直观的了解,也使学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣. 二、合作探究,探索新知 1.用圆规、刻度尺作△ABC,使AB=5cm,AC=4cm,BC=3cm,量一量∠C. 再画一个三角形,使它的三边长分别是5cm、12cm、13cm,这个三角形有什么特征? 2.为什么用上面的三条线段围成的三角形,就一定是直角三角形呢?它们的三边有怎样的关系?(学生分组讨论,教师适当指导) 学生猜想:如果一个三角形的三边长a、b、c满足关系a2+b2=c2,那么这个三角形是直角三角形. 【教学说明】学生画图还是有一定的困难,教师要让学生先打草稿,确定画图的方法和步骤,再按要求画图,然后通过测量得出结论,教师再及时予以总结. 3.探究:在下图中,△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应该与直角边是a、b的直角三角形全等.实际情况是这样吗?我们画一个直角三角形A′B′C′,使∠C′=90°,A′C′=b,B′C′=a.把画好的△A′B′C′剪下,放到△ABC上,它们重合吗?(学生分组动手操作,教师巡视指导) 4.用三角形全等的方法证明这个命题.(由于难度较大,由教师示范证明过程) 已知:在△ABC中,AB=c,BC=a,AC=b,并且a2+b2=c2,如上图 (1).求证:∠C=90°. 证明:作△A′B′C′,使∠C′=90°,A′C′=b,B′C′=a,如上图 (2),那么A′B′2=a2+b2(勾股定理) 又∵a2+b2=c2(已知) ∴A′B′2=c2,A′B′=c(A′B′>0) 在△ABC和△A′B′C′中, BC=a=B′C′,CA=b=C′A′,AB=c=A′B′ ∴△ABC≌△A′B′C′(SSS) ∴∠C=∠C′=90°, ∴△ABC是直角三角形. 5.小结:勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形. 【强调说明】 (1)勾股定理及其逆定理的区别. (2)勾股定理是直角三角形的性质定理,逆定理是直角三角形的判定定理. 【教学说明】 这个证明有一定的难度,教师要先逐步进行讲解,使学生能够理解,然后教师再进行强调,使学生能够充分掌握勾股定理的逆定理. 三、示例讲解,掌握新知 例1 根据下列三角形的三边a,b,c的值,判断△ABC是不是直角三角形.如果是,指出哪条边所对的角是直角. (1)a=7,b=24,c=25; (2)a=7,b=8,c=11. 解:(1)∵最大边是c=25,c2=625, a2+b2=72+242=625,∴a2+b2=c2. ∴△ABC是直角三角形,最大边c所对的角是直角. (2)∵最大边是c=11,c2=121,a2+b2=72+82=113. ∴a2+b2≠c2 ∴△ABC不是直角三角形. 【教学说明】这是对勾股定理逆定理的直接应用,关键是要让学生分清斜边和直角边,也要让学生理解斜边所对的角是直角. 例2 已知:在△ABC中,三条边长分别为a=n2-1,b=2n,c=n2+1(n>1),求证:△ABC为直角三角形. 证明:a2+b2=(n2-1)2+(2n)2 =n4-2n2+1+4n2 =n4+2n2+1 =(n2+1)2=c2 ∴△ABC为直角三角形.(勾股定理的逆定理)能够成为直角三角形三条边长度的三个正整数,称为勾股数. 【教学说明】 这是一个证明题,要求学生有严格的证明和推理过程,同时体现数形结合的思想. 四、练习反馈,巩固提高 1.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为_____,此三角形的形状为_____. 2.一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间距离是9米,B、D两点之间距离是5米,那么电线杆和地面是否垂直,为什么? 3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°. 【答案】1. 6米,8米,10米,直角三角形 2. △ABC、△ABD是直角三角形,AB和地面垂直. 3.提示:连结AC.AC2=AB2+BC2=25,AC2+AD2=CD2,因此∠CAB=90°, S四边形=S△ADC+S△ABC=36平方米. 【教学说明】了解学生学习的效果,让学生经历运用知识解决问题的过程,体会勾股定理逆定理的妙用. 五、师生互动,课堂小结 通过这节课的学习,你有什么收获?还有什么困惑?这节课我们学习了: 1.勾股定理的逆定理. 2.如何证明勾股定理的逆定理. 3.利用勾股定理的逆定理判定一个三角形是否为直角三角形. 【教学说明】 学生自主对本节课知识进行回顾,进一步加深理解和记忆. 完成同步练习册中本课时的练习. 在本节课的教学设计中,要注意从学生的认知水平和亲身感受出发,通过创设认知和数学史的学习情境,提高学生学习数学的积极性、学习兴趣以及人文意识,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手画图、测量、判断、找规律,猜想出一般的结论,然后由学生想、画、叠等验证结论、证明结论,使学生自始自终感悟、体验、尝试到了知识的生成与发展过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思维和方法,同时也体会在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 下册 18 勾股定理 18.2 逆定理 教案 沪科版
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文