正弦余弦定理习题课.ppt
《正弦余弦定理习题课.ppt》由会员分享,可在线阅读,更多相关《正弦余弦定理习题课.ppt(21页珍藏版)》请在咨信网上搜索。
1.21.2应用举例(应用举例(5 5)余弦定理余弦定理余弦定理余弦定理:正弦定理正弦定理正弦定理正弦定理:复习:复习:(R是三角形外接圆半径是三角形外接圆半径)实实现现边边角角互互化化余余余余弦弦弦弦定定定定理理理理的的的的变变变变式式式式正正正正弦弦弦弦定定定定理理理理的的的的变变变变式式式式在在 中,以下的三角关系式,在解答有关三角形问题时,中,以下的三角关系式,在解答有关三角形问题时,经常用到,要记熟并灵活地加以运用:经常用到,要记熟并灵活地加以运用:探究问题一正余弦定理的综合应用【例 1】在ABC 中,角 A,B,C 所对的边分别为 a,b,c,且 b2c2a2bc.(1)求角 A 的大小;zxx k又又0B180,B150.变变式式探究问题二:探究问题二:三角形中的化简求值三角形中的化简求值例例3:ABC中,已知中,已知a=2,求,求bcosCccosB的值。的值。解解:(化(化角角为为边边)由由余弦定理余弦定理得:得:bcosCccosBcb解法二解法二:(化(化边边为为角角)由由正弦定理正弦定理得:得:bcosCccosB例例3:ABC中,已知中,已知a=2,求,求bcosCccosB的值。的值。解法一:解法一:代入代入 得:得:由由正弦定理正弦定理得:得:(化(化边边为为角角)例例4:解法二:解法二:由由余弦定理得余弦定理得代入代入 得:得:整理得整理得(化(化角角为为边边)例例4:探究问题三探究问题三:用正余弦定理用正余弦定理 证明恒等式证明恒等式方法一方法一:边化角边化角;方法二方法二:角化边角化边;例5变式:在变式:在ABC中,中,a、b、c分别是分别是A、B、C的对的对边,试证明:边,试证明:a=bcosC+ccosB证明:由余弦定理知:证明:由余弦定理知:,右边右边=ABCDcba探究问题四判断三角形的形状例6:设ABC 的内角 A,B,C 所对的边分别为 a,b,c.若 bcosCccosBasinA,则ABC 的形状为()A直角三角形B锐角三角形C钝角三角形D不确定 zxx k 答案:A zxx k在在ABCABC中,中,a a、b b、c c分别表示三个内角分别表示三个内角 A A、B B、C C的对边,如果(的对边,如果(a a2 2+b b2 2)sinsin(A A-B B)=(a a2 2-b b2 2)sinsin(A A+B B),判断三角形的形状),判断三角形的形状.利用正弦定理、余弦定理进行边角利用正弦定理、余弦定理进行边角 互化,转化为边边关系或角角关系互化,转化为边边关系或角角关系.解解 方法一方法一 已知等式可化为已知等式可化为 a a2 2sinsin(A A-B B)-sin-sin(A A+B B)=b b2 2-sin-sin(A A+B B)-sin(-sin(A A-B B)2 2a a2 2cos cos A Asin sin B B=2=2b b2 2cos cos B Bsin sin A A 由正弦定理可知上式可化为:由正弦定理可知上式可化为:sin sin2 2A Acos cos A Asin sin B B=sin=sin2 2B Bcos cos B Bsin sin A A变式变式1:课堂小结1正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时要及时考虑另外一个定理2.已知条件中既有边,又有角,解决问题的一般思路是两种:利用余弦定理将所有的角转换成边后求解利用正弦定理将所有的边转换成角后求解- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 余弦 定理 习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文