误差理论误差的合成与分配.ppt
《误差理论误差的合成与分配.ppt》由会员分享,可在线阅读,更多相关《误差理论误差的合成与分配.ppt(54页珍藏版)》请在咨信网上搜索。
1、合肥工业大学误差理论与数据处理第3章 误差的合成与分配合肥工业大学误差理论与数据处理教学目标本章阐述了函数误差、误差合成与分配的基本方法,并讨论了微小误差的取舍、最佳测量方案的确定等问题。通过本章的学习,读者应掌握函数系统误差和函数随机误差的计算以及误差的合成和分配。合肥工业大学误差理论与数据处理重点和难点n n函数系统误差n n函数随机误差n n函数误差分布的模拟计算n n随机误差的合成n n未定系统误差和随机误差的合成n n误差分配n n微小误差取舍准则n n最佳测量方案的确定 合肥工业大学误差理论与数据处理间接测量间接测量 函数误差函数误差 间接测得的被测量误差也应是直接测得量及其误差的
2、函数,故称这种间接测量的误差为函数误差函数误差 通过直接测得的量与被测量之间的函数关系计算出被测量 第一节函数误差合肥工业大学误差理论与数据处理一、函数系统误差计算一、函数系统误差计算第一节函数误差间接测量的数学模型 与被测量有函数关系的各个直接测量值 y 间接测量值求上述函数 y 的全微分,其表达式为:合肥工业大学误差理论与数据处理 和 的量纲或单位不相同,则 起到误差单位换算的作用 和 的量纲或单位相同,则 起到误差放大或缩小的作用由 y 的全微分,函数系统误差 的计算公式 为各个输入量在该测量点 处的误差传播系数 第一节函数误差合肥工业大学误差理论与数据处理几种简单函数的系统误差几种简单
3、函数的系统误差 1、线性函数2、三角函数形式 系统误差公式当 当函数为各测量值之和时,其函数系统误差亦为各个测量值系统误差之和 第一节函数误差合肥工业大学误差理论与数据处理【例】用弓高弦长法间接测量大工件直径。如图所示,车间工人用一把卡尺量得弓高 h=50mm,弦长s=500mm。已知,弓高的系统误差 h=-0.1mm,玄长的系统误差 h=-1mm。试问车间工人测量该工件直径的系统误差,并求修正后的测量结果。【解】建立间接测量大工件直径的函数模型 不考虑测量值的系统误差,可求出在 处的直径测量值 第一节函数误差合肥工业大学误差理论与数据处理车间工人测量弓高 h、弦长 l 的系统误差 直径的系统
4、误差:故修正后的测量结果:计算结果:计算结果:误差传递系数为:第一节函数误差合肥工业大学误差理论与数据处理二、函数随机误差计算二、函数随机误差计算第一节函数误差数学模型数学模型 变量中只有随机误差泰勒展开,并取其一阶项作为近似值函数的一般形式 得到 即:可得:合肥工业大学误差理论与数据处理函数标准差计算函数标准差计算 或 第i个直接测得量 的标准差 第i个测量值和第j个测量值之间的相关系数 第i个测量值和第j个测量值之间的协方差 第i个直接测得量 对间接量 在该测量点 处的误差传播系数 第一节函数误差合肥工业大学误差理论与数据处理或相互独立的函数标准差计算相互独立的函数标准差计算 若各测量值的
5、随机误差是相互独立的,相关项 令第一节函数误差则 当各个测量值的随机误差都为正态分布时,标准差用极限误差代替,可得函数的极限误差公式 第i个直接测得量 的极限误差 合肥工业大学误差理论与数据处理三角形式的函数随机误差公式三角形式的函数随机误差公式1)正弦函数形式为:函数随机误差公式为:第一节函数误差2)余弦函数形式为:函数随机误差公式为:三角函数标准差计算三角函数标准差计算 3)正切函数形式为:函数随机误差公式为:4)余弦函数形式为:函数随机误差公式为:合肥工业大学误差理论与数据处理【解】【解】【例】【例】用弓高弦长法间接测量大工件直径。如图所示,车间工人用一把卡尺量得弓高 h=50mm,弦长
6、s=500mm。已知,弓高的系统误差 h=-0.1mm,玄长的系统误差 h=-1mm。试求测量该工件直径的标准差,并求修正后的测量结果。已知:,有修正后的测量结果 第一节函数误差合肥工业大学误差理论与数据处理相关系数对函数误差的影响相关系数对函数误差的影响 反映了各随机误差分量相互间的线性关联对函数总误差的影响 函数标准差与各随机误差分量标准差之间具有线性的传播关系 函数随机误差公式当相关系数 时当相关系数 时2 2、相关系数估计相关系数估计第一节函数误差合肥工业大学误差理论与数据处理相关系数的确定相关系数的确定可判断 的情形 断定 与 两分量之间没有相互依赖关系的影响 当一个分量依次增大时,
7、引起另一个分量呈正负交替变化,反之亦然 与 属于完全不相干的两类体系分量,如人员操作引起的误差分量与环境湿度引起的误差分量 与 虽相互有影响,但其影响甚微,视为可忽略不计的弱相关 1 1、直接判断法、直接判断法第一节函数误差合肥工业大学误差理论与数据处理可判断 或 的情形 断定 与 两分量间近似呈现正的线性关系或负的线性关系 当一个分量依次增大时,引起另一个分量依次增大或减小,反之亦然 与 属于同一体系的分量,如用1m基准尺测2m尺,则各米分量间完全正相关 第一节函数误差2 2、试样观察法和简略计算法、试样观察法和简略计算法 (1 1)观察法观察法合肥工业大学误差理论与数据处理第一节函数误差
8、(2 2)简单计算法简单计算法其中,n2n3n4n10 (3 3)直接计算法直接计算法 根据 的多组测量的对应值 ,按如下统计公式计算相关系数 、分别为 、的算术平均值 (4 4)理论计算法理论计算法合肥工业大学误差理论与数据处理第二节随机误差的合成 任何测量结果都包含有一定的测量误差,这是测量过程中各个环节一系列误差因素作用的结果。误差合成就是在正确地分析和综合这些误差因素的基础上,正确地表述这些误差的综合影响。标准差合成 极限误差合成解决随机误差的合成问题一般基于标准差方和根合成的方法,其中还要考虑到误差传播系数以及各个误差之间的相关性影响 随机误差的合成形式包括:合肥工业大学误差理论与数
9、据处理一、标准差合成一、标准差合成合成标准差表达式合成标准差表达式:q个单项随机误差,标准差 误差传播系数 v 由间接测量的显函数模型求得 v 根据实际经验给出 v知道影响测量结果的误差因素 而不知道每个 和 第二节随机误差的合成合肥工业大学误差理论与数据处理当误差传播系数 、且各相关系数均可视为0的情形 第二节随机误差的合成若各个误差互不相关,即相关系数 则合成标准差 用标准差合成有明显的优点,不仅简单方便,而且无论各单项随机误差的概率分布如何,只要给出各个标准差,均可计算出总的标准差 视各个误差分量的量纲与总误差量的量纲都一致,或者说各个误差分量已经折算为影响函数误差相同量纲的分量 合肥工
10、业大学误差理论与数据处理二、极限误差合成二、极限误差合成 单项极限误差单项极限误差:单项随机误差的标准差 单项极限误差的置信系数 合成极限误差合成极限误差:合成标准差 合成极限误差的置信系数 第二节随机误差的合成合成极限误差计算公式合成极限误差计算公式合肥工业大学误差理论与数据处理根据已知的各单项极限误差和所选取的各个置信系数,即可进行极限误差的合成 各个置信系数 、不仅与置信概率有关,而且与随机误差的分布有关 对于相同分布的误差,选定相同的置信概率,其相应的各个置信系数相同 对于不同分布的误差,选定相同的置信概率,其相应的各个置信系数也不相同 第二节随机误差的合成ij 为第i个和第j个误差项
11、之间的相关系数,可根据前一节的方法确定。应用极限误差合成公式时,应注意:应用极限误差合成公式时,应注意:合肥工业大学误差理论与数据处理 当各个单项随机误差均服从正态分布时,各单项误差的数目q较多、各项误差大小相近和独立时,此时合成的总误差接近于正态分布合成极限误差:合成极限误差:若和各单项误差大多服从正态分布或近似服从正态分布,而且他们之间常是线性无关或近似线性无关,是较为广泛使用的极限误差合成公式 第二节随机误差的合成时:此时合肥工业大学误差理论与数据处理第三节系统误差合成一、已定系统误差的合成一、已定系统误差的合成系统误差的分类:系统误差的分类:1)已定系统误差2)未定系统误差定义定义:误
12、差大小和方向均已确切掌握了的系统误差表示符号:表示符号:合成方法合成方法:按照代数和法进行合成按照代数和法进行合成i 为第i个系统误差,ai为其传递系数系统误差可以在测量过程中消除,也可在合成后在测量结果中消除合肥工业大学误差理论与数据处理二、未定系统误差的合成二、未定系统误差的合成 第三节系统误差合成(一)(一)未定系统误差的特征及其评定未定系统误差的特征及其评定定义定义:误差大小和方向未能确切掌握,或者不须花费过多精力去掌握,而只能或者只需估计出其不致超过某一范围 e 的系统误差特征特征:1)在测量条件不变时为一恒定值,多次重复测量时其值固定不变,因而单项系统误差在重复测量中不具有低偿性2
13、)随机性。当测量条件改变时,未定系统误差的取值在某极限范围内具有随机性,且服从一定的概论分布,具有随机误差的特性。表示符号:表示符号:极限误差:极限误差:e 标准差:标准差:u合肥工业大学误差理论与数据处理1、标准差合成、标准差合成第三节系统误差合成(二)(二)未定系统误差的合成未定系统误差的合成 未定系统误差的取值具有一定的随机性,服从一定的概率分布,因而若干项未定系统误差综合作用时,他们之间就具有一定的抵偿作用。这种抵偿作用与随机误差的抵偿作用相似,因而未定系统误差的合成,完全可以采用随机误差的合成公式,这就给测量结果的处理带来很大方便。同随机误差的合成时,未定系统误差合成时即克可以按照标
14、准差合成,也可以按照极限误差的形式合成。若测量过程中有 s 个单项未定系统误差,它们的标准差分别为 u1,u2,us,其相应的误差传递系数为a1,a2,as,则合成后未定系统误差的总标准差 u 为:合肥工业大学误差理论与数据处理则由各单项未定系统误差标准差得到的合成未定系统误差极限误差为:式中,ij 为第 i 个和第 j 个误差项的相关系数第三节系统误差合成当 ij=0 时2、极限误差的合成、极限误差的合成 因为各个单项未定系统误差的极限误差为:若总的未定系统误差极限误差表示为:则有:合肥工业大学误差理论与数据处理第三节系统误差合成或者,由各单项未定系统误差极限误差得到的合成未定系统误差极限误
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 误差 理论 合成 分配
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。