基于模糊PID的智能制造生产线控制算法设计.pdf
《基于模糊PID的智能制造生产线控制算法设计.pdf》由会员分享,可在线阅读,更多相关《基于模糊PID的智能制造生产线控制算法设计.pdf(6页珍藏版)》请在咨信网上搜索。
1、IM新技术新应用 New Technology&New Application110 2024年第1期基于模糊 PID 的智能制造生产线 控制算法设计吴神风,刘宇,冉倩,易祖成,王艺尧,梁孝东(湖北中烟有限责任公司恩施卷烟厂,湖北 恩施 445000)摘要:生产线控制过程具有复杂性高、动态性强及变量多等特点,导致智能制造生产线控制难度大幅度上升。因此,提出基于模糊 PID 的智能制造生产线控制方法。利用传感器采集智能制造生产线的运行数据,剔除数据采集结果中的异常数据。使用 LAD-LASSO 算法从处理后的数据中提取实时状态数据的重要特征,利用这些重要特征识别智能制造生产线的运行状态,根据智能
2、制造生产线运行状态来确定模糊控制器(PID)的参数,实现对生产线的精细控制。实验结果表明:本文方法的控制精度最高达到 97%,执行效率与响应时间最高分别为 299 个/h、16s,具有实用性。关键词:模糊 PID;传感器;通信模块;智能制造生产线中图分类号:TP273+.4文献标志码:A1引言智能制造生产线控制是指利用先进的信息技术,如人工智能、物联网、大数据等,在生产线上进行智能化管理和控制的领域,是通过优化生产过程来提高生产效率的重要手段。自动化控制系统能够实现高速、高精度的生产操作,同时也能够有效降低成本并提高产品质量。智能制造生产线的控制可以通过合理配置资源、优化调度和减少人力投入等方
3、式降低生产成本。通过自动化检测、实时监控和质量控制等手段,能够提高产品质量的一致性和稳定性,并且能够对生产过程中的实时监测情况进行调整,及时发现和纠正问题,从而减少生产中的缺陷和不良品率1。有效的智能制造生产线控制还可以实现灵活生产。通过灵活的控制系统,能够快速切换不同产品或订单,并根据需求进行生产线的调整和优化,提高生产线的灵活性和适应性。因此,许多相关研究人员针对智能制造生产线控制进行了深入研究。向艳芳2等利用 PLC 对智能制造生产线进行控制,通过多设备的联动工作实现了复杂零件的混合加工生产,并采用 PLC 和 HMI 界面作为控制系统。汪有才3等提出基于 ProfiNet 对智能制造生
4、产线进行控制,通过工业以太网交换机与总控 PLC 进行 ProfiNet 通信,实现了设备之间的直接交互控制。蒋金伟4等根据 ARM 架构设计控制器设备,与传感器模块、数据传送通信模块作为系统硬件。在系统软件设计分析自动包装生产线机械结构与工艺流程,结合实时信号检测结果计算生产线控制量,New Technology&New Application 新技术新应用IM投稿网站: 2024年第1期 111以此控制传送带速度、包装放料恒张力、机械手套袋与装箱,完成全自动包装生产线控制系统软件设计。然而,生产线通常具有复杂的结构和动态特性,包括多变量之间的相互影响和关联,这些复杂性使得上述方法无法有效的
5、对生产线进行有效控制,导致控制精度较差。模糊 PID 控制器在解决一些复杂的控制问题时具有较好的适应性和鲁棒性5-6。其能够根据实际系统的特征进行自适应调整,并且具有一定程度的容错性。在智能制造生产线中,通常会涉及处理多个设备和关联的控制变量。模糊 PID 控制器能够利用模糊推理和模糊规则库来处理多变量之间的交互关系,提供一种综合性的控制策略,有效地协调各个设备之间的工作,提高整个生产线的效率和性能。2基于模糊 PID 的智能制造生产线控制2.1智能制造生产线运行数据采集与预处理智能制造生产线的工作环境可能会存在一定的干扰源,如电磁场、噪音、振动等,这些干扰可能会对用于测量结果的传感器产生影响
6、,导致收集的信息中出现了较多存在错误的异常信息,使得采集数据的可靠性和稳定性都会受到干扰。设定在制造生产线中共安装使用了 N 个传感器,对制造生产线中的实时状态数据信息开展监测,假定这 N 个传感器同时进行了 M 次监测,那么编号为 a 的传感器在 h时刻的检测数值界定为。定义dah为编号 a 和 b 两传感器的融合度,即它们之间的一致性检验 dah可由下式计算:(1)式中,G(x)表示一个标准的正态分布函数,2表示 h 时测量数据的方差,lab表示传感器数据之间一致性的判定结果。G(x)的计算公式如下:(2)针对同一时间段检测某个物理量的 N 个传感器,检测数据之间的融合度用矩阵 D 来表示
7、:(3)设定融合度 dab的阈值为 aab,将数据融合度矩阵 D中的 dab与设定的界值相比较,得到传感器数据之间一致性的判定结果 lab,表达式:(4)若一致性判定结果 lab为 1,则表示第 a 个与第 b 个传感器的融合性能比较好,称它们相互支持。反之,说明了编号为 a 和 b 的两个传感器融合性能较差,称它们之间并没有相互支持。如果某一传感器只获得较少的传感器支持,则此传感器采集的数据将被确认为存在异常数据,并需要剔除。如果同时被数个传感器支持,即为有效正常数据,当监测到一个传感器的数据采集值持续非正常时,就必须对该传感器进行检测,判定是否是具有故障的传感器。则最终去除异常数据的制造生
8、产线运行数据采集结果:(5)2.2智能制造生产线运行状态识别以上述预处理后的制造生产线运行数据为基础,通过LAD-LASSO提取出生产线实时状态数据的重要特征,利用这些特征识别智能制造生产线运行状态。建立一般线性回归模型,其中自变量和因变量进行中心化处理,消除它们之间的线性关系:(6)为了简化模型,可以对因变量和自变量进行中心化处理,使得 0=0,消除它们之间的线性关系,得到简化模型:(7)式中,yiR是因变量,是回归系数向量,是 p 维协变量行向量,i是独立同分布的随机误差。然后,加入 L1正则化惩罚项,L1正则化惩罚项可以使得一部分回归系数为 0,从而实现特征选择和提取的功能。具体来说,L
9、1正则化惩罚项与回归系数的绝对值成正比,因此,对于某些不重要的特征,其对应的回归系数可能会被惩罚到 0,从而实现特征选择的效果。得到LAD-LASSO 的目标函数:(8)式中,wi是由 x 的稳健度量确定的权重,i0 是正则化参数,X 为 np 的自变量矩阵,yi是因变量向量,IM新技术新应用 New Technology&New Application112 2024年第1期 是残差平方和,是L1正则化惩罚项。采用交叉验证方法来确定正则化参数 的值,从而达到最优的特征选择效果,其表达式:(9)式中,CV(i)是在给定的正则化参数 i下进行交叉验证的误差,CV(i)越小,说明模型的泛化能力越好
10、,特征选择效果越好。最后,建立数据集,其中,且定义,ej是一个 p 维向量,第 j 个元素等于 1,其余元素等于 0。使用所得到的最优正则化参数值进行回归估计,得到最终的回归估计量。这些回归系数构成了最终的特征集合,其中系数为 0 的对应特征被剔除。则重要特征选择结果:(10)利用特征选择结果识别智能制造生产线运行状态,具体的结果如下:(11)式中,表示参与定义和描述生产线运行状态的各种参数,f 表示状态函数。2.3基于生产线运行状态的模糊 PID 控制算法设计模糊 PID 控制7是一种基于传统控制方法的改进。本文选用模糊 PID 进行制造生产线控制,模糊控制结构如图 1 所示。图 1模糊控制
11、结构图模糊 PID 控制是基于预处理后的制造生产线实时状态数据信息,通过模糊推理策略来调节 PID 的 3 个参数:比例、积分和微分8。这种控制策略满足制造生产线在制造过程中不同时刻的控制要求,提升 PID 控制器的自适应性能,确保制造生产线的控制精度,具体控制流程 如下:(1)模糊处理及隶属度函数确定模糊 PID 控制利用上述预处理后的制造生产线实时状态数据信息,将该数据与最终期望值相减,形成误差数据信号9。通过固定的比例因子对误差数据信号进行模糊化后,将其作为控制器的输入。模糊规则会对输入的信息进行复杂逻辑推理运算,实时输出关于 PID 控制的 3 个参数的修正量,从而进行实时调整,以确保
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 模糊 PID 智能 制造 生产线 控制 算法 设计
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。