复杂环境下基于自监督LSTM网络的导航误差建模补偿.pdf
《复杂环境下基于自监督LSTM网络的导航误差建模补偿.pdf》由会员分享,可在线阅读,更多相关《复杂环境下基于自监督LSTM网络的导航误差建模补偿.pdf(10页珍藏版)》请在咨信网上搜索。
1、第32卷第2期 中国惯性技术学报 Vol.32 No.2 2024 年 02 月 Journal of Chinese Inertial Technology Feb.2024 收稿日期:收稿日期:2023-09-18;修回日期:修回日期:2024-01-02 基金项目:基金项目:航空基金重点项目(201908018001)作者简介:作者简介:成果达(1988),男,高级工程师,从事惯性导航技术研究。文章编号:文章编号:1005-6734(2024)02-0115-10 doi.10.13695/ki.12-1222/o3.2024.02.002 Modeling and compensati
2、on of navigation error based on self-supervised LSTM network in complex environment CHENG Guoda1,2,YUE Yazhou2,WEI Yanyi2,LI Sihai1(1.School of Automation,Northwestern Polytechnical University,Xian 710072,China;2.AVIC Xian Flight Automatic Control Research Institute,Xian 710065,China)Abstract:Aiming
3、 at the problems that the inertial navigation system has interactive effects and navigation errors are difficult to identify in complex environment,a navigation error compensation method based on self-supervised long short term memory(LSTM)network intelligent combination model is proposed.The self-s
4、upervised temperature change rate module is proposed to overcome the limit of temperature sensor precision and provide temperature change rate in real time,which further improves the ability of the model to identify navigation error.In the experiment section,the effectiveness of the self-supervised
5、module is verified through ablation experiments under various complex environment.Taking the northward velocity of flight test data as an example,the maximum absolute velocity error before compensation is 1.607 m/s,and 0.357 m/s after.Experimental results prove that the velocity and position error u
6、nder complex physics environment could be effectively reduced,and the pure inertial navigation performance is therefore improved.Key words:inertial navigation;long short term memory network;navigation error compensation;self-supervised learning 复杂环境下基于自监督复杂环境下基于自监督 LSTM 网络的导航误差建模补偿网络的导航误差建模补偿 成果达1,2
7、,岳亚洲2,韦彦一2,李四海1(1.西北工业大学 自动化学院,西安 710072;2.西安飞行自动控制研究所,西安 710065)摘要:摘要:针对复杂环境下惯导系统存在交互影响和导航误差难以辨识的问题,提出了一种基于自监督长短期记忆(LSTM)网络智能组合模型的导航误差补偿方法。模型中的自监督温变速率模块不受到温度传感器精度的限制,从而实时计算更精确的温变速率,进一步提升了模型导航误差辨识的能力。在实验部分,基于多种复杂环境下的实验数据,通过消融实验验证了自监督模块的有效性。以飞行数据的北向速度为例,补偿前后的最大速度绝对误差分别为 1.607 m/s 和 0.357 m/s。实验结果说明了所
8、提方法可以减小复杂环境下的速度和位置误差,从而提升惯性导航精度。关关 键键 词:词:惯性导航;长短期记忆网络;导航误差补偿;自监督学习 中图分类号:中图分类号:U666.1 文献标志码:文献标志码:A The navigation performance of the strap-down inertial navigation system(SINS)is directly affected by the inertial measurement units(IMUs),and the performance of the IMUs fluctuates greatly due to the
9、 environmental influence.The SINS does not have a physical platform to isolate the angular motion of the aircraft,and the IMU is directly attached to the moving aircraft.Therefore,the gyroscope and accelerometer in the IMU will be directly sensitive to the angular and linear motion of the aircraft.C
10、ompared with the platform inertial navigation,the measurement range of the IMU in the strap-down inertial navigation,especially the angular velocity range of the gyroscope measurement,is much larger.Under high dynamic conditions,the SINS needs to 116 中国惯性技术学报 第 32 卷 accurately model and compensate f
11、or dynamic errors of gyroscopic and accelerometer to ensure navigation performance1.When combined with global navigation satellite system(GNSS),the accumulative error could be diminished using Kalman filter2.However,the satellite signal is not always available,resulting in deficiency of navigation p
12、erformance.On the one hand,the study of navigation error modelling compensation still requires further exploration.In the field of modelling the dynamic error of laser inertial navigation,state-of-the-art researches mainly focus on compensating for the dynamic error of accelerometer3,while the study
13、 of gyroscopic dynamic error is relatively limited.The angular velocity measurement error model presented in Ref.4 takes the anisoelasticity error caused by high-frequency jitter devices into consideration.Ref.5 divides nonelastic error by device level and system level,and derives the drift error un
14、der certain specific motion conditions based on the relationship between gyroscope output and rotation vector.On the other hand,the error mechanism of the entire IMU is not clear and the closed-form expression is difficult to establish.In reality,the non-rigid nature of the IMU caused by the mechani
15、cal jitter of the laser gyroscope may result in the actual error model much more complex beyond imagination.IMUs are not only sensitive to the temperature of individual time steps6,7,but may also be related to other parameters(such as gradient and changing rate of temperature,etc.)of the temperature
16、 field around.Such quantities are difficult to collect through the relevant sensors.Hence,there is an urgent need to find a suitable method to build the part of the model that is difficult to obtain by simply analyzing physical properties.Artificial intelligence and neural networks have attracted at
17、tention in study of nonlinear systems due to their superior representation ability,among which long short term memory networks(LSTMs)have brought fresh insights for time series data.The excellent learning ability of neural networks has made them widely adopted as a kind of general approximator in th
18、e identification of nonlinear dynamic systems8.The theoretical analysis is rigorous and the system is mature for the classic function approximation theory.Neural networks provide a very effective black box tool for identification of nonlinear systems with their excellent function approximation abili
19、ty.When dealing with time series data,recurrent neural networks(RNNs)are proved to be effective and gain widespread application.But there exists the inevitable long-term dependencies problem of RNN in practical use.In this case,LSTM was proposed to exploit long-term information by integrating gating
20、 mechanisms9,therefore overcoming the internal possible gradient vanishing or explosion problems of RNNs.LSTM has been extensively applied in fields of computer vision,natural language processing and financial time forecasting.More recently,LSTM has been integrated with multiple techniques for explo
21、iting the character and information of time series data.Ref.1010 combined LSTM with encoder-decoder structure for sequence-to-sequence mapping and information compressing in power electronics converter modelling.Ref.11 introduced advanced LSTM models by adding attention module on different layers.LS
22、TM networks have been adopted to enhance navigation performance in recent years,but the usage of temperature change rate requires further improvement.In recent years,LSTM networks have also been adopted in navigation era in order to compensate for the unknown time series navigation error model12.Amo
23、ng the error models including black box model such as neural networks and white box model such as polynomial model,input variables commonly cover acceleration,temperature,magnetic information,etc.Temperature change rate has also been proven to be statistically significant as one of the input variabl
24、es in error modelling13.However,the accurate temperature change rate is difficult to acquire directly due to the precision limit of thermometers attached to IMUs.Under regular circumstances,the temperature of IMUs changes slowly over time and the thermometers is unable to reach ideal precision.Hence
25、 the ideal slope of temperature change rate could easily reduce to binary numerical temperature with the unit of minimum temperature measurement scale.While the linear filters could be easy to calculate and smoothen the temperature measurements in time domain,the filtered series still contain noises
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复杂 环境 基于 监督 LSTM 网络 导航 误差 建模 补偿
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。