Pascal动态规划-236.ppt
《Pascal动态规划-236.ppt》由会员分享,可在线阅读,更多相关《Pascal动态规划-236.ppt(22页珍藏版)》请在咨信网上搜索。
1、PascalPascal动态规划动态规划多阶段决策过程 多阶段决策过程多阶段决策过程多阶段决策过程多阶段决策过程(multistepdecisionprocess)是指这样一类特殊的活动过程,过程可以按时间顺序分解成若干个相互联系的阶段,在每一个阶段都需要做出决策,全部过程的决策是一个决策序列。动态规划动态规划动态规划动态规划(dynamicprogramming)算法是解决多阶段决策过程最优化问题的一种常用方法,难度比较大,技巧性也很强。利用动态规划算法,可以优雅而高效地解决很多贪婪算法或分治算法不能解决的问题。求解问题的两个重要性质 最优子结构性质最优子结构性质最优子结构性质最优子结构性质
2、:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理)。最优子结构性质为动态规划算法解决问题提供了重要线索。子问题重叠性质子问题重叠性质子问题重叠性质子问题重叠性质:在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的解题效率。动态规划与分治、递归、贪心的区别 递归算法递归算法递归算法递归算法在程序实现上直观容易,但因为
3、子问题被重复计算,且程序背后存在对栈的操作,速度(计算复杂度一般是指数级的)上劣于动态规划。在递归的过程中,通过保存子问题的结果,可以减少计算量,同样是空间换时间的思想,称作memoization算法。分治法分治法分治法分治法要求各个子问题是独立的(即不包含公共的子问题),因此一旦递归地求出各个子问题的解后,便可自下而上地将子问题的解合并成原问题的解。动态规划与分治法的不同之处在于动态规划允许这些子问题不独立(即各子问题可包含公共的子问题),它对每个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。这就是动态规划高效的一个原因。在贪婪算法贪婪算法贪婪算法贪婪算法中,每采用一次贪婪准
4、则,便做出一个不可撤回的决策;而在动态规划算法中,还要考察每个最优决策序列中是否包含一个最优决策子序列,即问题是否具有最优子结构性质。最短路径问题图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?题题1最长不下降子序列【问题描述】设有整数序列b1,b2,b3,bm,若存在i1i2i3in,且bi1bi2bi3bin,则称b1,b2,b3,bm中有长度为n的不下降序列bi1,bi2,bi3,bin。求序列b1,b2,b3,bm中所有长度(n)最大不下降子序列输入:整数序列输出:最
5、大长度n题题1最长不下降子序列【分析】设F(i)为前I个数中的最大不下降序列长度。由题意不难得知,要求F(i),需要求得F(1)F(i-1),然后选择一个最大的F(j)(jbj),那么前I个数中最大不下降序列便是前j个数中最大不下降序列后添加bi而得。可见此任务满足最优子结构,可以用动态规划解决。通过上面的分析可得状态转移方程如下:F(i)=maxF(j)+1(ji,bjbj)and(filenthenlen:=fi记录最大值题题2数塔如下图所示的数塔,从顶部出发,在每一结点可以选择向左下走或是向右下走,一直走到底层,要求找出一条路径,使路径上的数的和最大。数塔层数用n表示,1=n=100。题
6、题2数塔贪心法。时间上有保证,但得不到最优解。主要原因是贪心法只顾眼前利益,不考虑长远利益。在规定时间内得到正确结果,唯一的方法就是“动态规划”。下面以示意图表示动态规划的过程:所选路径为:9-12-10-18-10注意分析时,有以下几个特点:(1)将问题划分成了4个阶段;(2)每个阶段均得到了“部分”的最优解,得到最优解时,需要进行条件判断;(3)从最下面一层往顶层推导。题题3棋盘路径问题【题目简介】有一个n*m的棋盘,左下角为(1,1),右上角为(n,m),如下图:有一颗棋子,初始位置在(1,1),该棋子只能向右走或者向上走,问该棋子从(1,1)到(n,m)一共有几条路径?输入:两个整数n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- Pascal 动态 规划 236
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。