立体几何中的折叠问题.doc
《立体几何中的折叠问题.doc》由会员分享,可在线阅读,更多相关《立体几何中的折叠问题.doc(5页珍藏版)》请在咨信网上搜索。
立体几何中的折叠问题 1.概念:将平面图形沿某直线翻折成立体图形,再对折叠后的立体图形的线面位置关系和某几何量进行论证和计算,就是折叠问题. 2.折叠问题分析求解原则: (1)折叠问题的探究须充分利用不变量和不变关系; (2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变。 (最值问题)1、把正方形ABCD沿对角线AC折起,当以A、B、C、D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成角的大小为_______. (两点间距离,全品83页)2、把长宽分别为、2的长方形ABCD沿对角线AC折成60o的二面角,求顶点B和D的距离。 3、(全品70页)给出一边长为2的正三角形纸片,把它折成一个侧棱长与底面边长都相等的三棱锥,并使它的全面积与原三角形面积相等,设计一种折叠方法,并用虚线标在图中,并求该三棱锥的体积。 4、(2005江西文)矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B—AC—D,则四面体ABCD的外接球的体积为 ( ) A. B. C. D. 解决折叠问题的关键是弄清折叠前后哪些量没有变化,折叠后位置关系怎样变化,通过空间想象折叠成的几何体的形状来分析已知和待求,是培养空间想象能力的很好的题型。 高考题中的折叠问题 1、在正方形SG1G2G3中E、F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE、SF及EF 把这个正方形折成一个四面体,使G1、G2、G3三点重合,重合后的点记为G.那么,在四面体S—EFG 中必有 (A)SG⊥△EFG所在平面 (B)SD⊥△EFG所在平面 (C)GF⊥△SEF所在平面 (D)GD⊥△SEF所在平面 2、如图,在正三角形ABC中,D,E,F分别为各边的中点, G,H,I,J分别为AF,AD,BE,DE的中点.将△ABC沿DE, EF,DF折成三棱锥以后,GH与IJ所成角的度数为( ) A.90° B.60° C.45° D.0° 3、(2005浙江理科)12.设M、N是直角梯形ABCD两腰的中点,DE⊥AB于E(如下图).现将△ADE沿DE折起,使二面角A-DE-B为45°,此时点A在平面BCDE内的射影恰为点B,则M、N的连线与AE所成角的大小等于_____. 4、(2006山东)如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE与△BEC分别沿ED、EC向上折起,使A、B重合于点P,则P-DCE三棱锥的外接球的体积为 (A) (B) (C) (D) 5、(2009浙江)如图,在长方形中,,,为的中点,为线段(端点除外)上一动点.现将沿折起,使平面平面.在平面内过点作,为垂足.设,则的取值范围是 . 6.(2010上海)在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A、(B)、C、D、O为顶点的四面体的体积为 。 7、(2010浙江)如图,在矩形中,点分别在线段上, .沿直线将翻折成,使平面. (I)求二面角的余弦值; (II)点分别在线段上,若沿直线将四边形向上翻折,使与重合,求线段的长. 8、(2009浙江备) 如图, 在平面内直线EF与线段AB相交于C点, ∠BCF=, 且 AC = CB = 4, 将此平面沿直线EF折成的二面角-EF-, BP⊥平面, 点P为垂足. B A F C C B P A E E F (Ⅰ) 求△ACP的面积;(Ⅱ) 求异面直线AB与EF所成角的正切值. 9、(2007广东)图6 P E D F B C A 如图所示,等腰的底边,高,点是线段上异于点的动点,点在边上,且,现沿将折起到的位置,使,记,表示四棱锥的体积. (1)求的表达式; (2)当为何值时,取得最大值? (3)当取得最大值时,求异面直线与所成角的余弦值. 10、(2006辽宁)已知正方形,分别是边的中点,将沿折起,如图所示,记二面角的大小为(). (1)证明平面; (2)若为正三角形,试判断点在平面内的射影是否在直线上,证明你的结论,并求角的余弦值. A B C D E F 第 5 页 共 5 页- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何 中的 折叠 问题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文