分享
分销 收藏 举报 申诉 / 12
播放页_导航下方通栏广告

类型椭圆经典练习题两套(带答案).doc

  • 上传人:w****g
  • 文档编号:2394478
  • 上传时间:2024-05-29
  • 格式:DOC
  • 页数:12
  • 大小:328.81KB
  • 下载积分:8 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    椭圆 经典 练习题 答案
    资源描述:
    椭圆练习题1 A组 基础过关 一、选择题(每小题5分,共25分) 1.(2012·厦门模拟)已知椭圆的长轴长是短轴长的倍,则椭圆的离心率等于 (  ). A. B. C. D. 解析 由题意得2a=2b⇒a=b,又a2=b2+c2⇒b=c⇒a=c⇒e=. 答案 B 2.(2012·长沙调研)中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是(  ). A.+=1 B.+=1 C.+=1 D.+=1 解析 依题意知:2a=18,∴a=9,2c=×2a,∴c=3, ∴b2=a2-c2=81-9=72,∴椭圆方程为+=1. 答案 A 3.(2012·长春模拟)椭圆x2+4y2=1的离心率为(  ). A. B. C. D. 解析 先将x2+4y2=1化为标准方程+=1,则a=1,b=,c==.离心率e==. 答案 A 4.(2012·佛山月考)设F1、F2分别是椭圆+y2=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF1⊥PF2,则点P的横坐标为(  ). A.1 B. C.2 D. 解析 由题意知,点P即为圆x2+y2=3与椭圆+y2=1在第一象限的交点,解方程组得点P的横坐标为. 答案 D 5.(2011·惠州模拟)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为(  ). A.+=1 B.+=1 C.+=1 D.+=1 解析 依题意设椭圆G的方程为+=1(a>b>0), ∵椭圆上一点到其两个焦点的距离之和为12, ∴2a=12,∴a=6, ∵椭圆的离心率为. ∴=, ∴=.解得b2=9, ∴椭圆G的方程为:+=1. 答案 C 二、填空题(每小题4分,共12分) 6.若椭圆+=1上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离是________. 解析 由椭圆的定义可知,|PF1|+|PF2|=2a,所以点P到其另一个焦点F2的距离为|PF2|=2a-|PF1|=10-6=4. 答案 4 7.(2011·皖南八校联考)已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|=2|PF2|,∠PF1F2=30°,则椭圆的离心率为________. 解析 在三角形PF1F2中,由正弦定理得 sin∠PF2F1=1,即∠PF2F1=, 设|PF2|=1,则|PF1|=2,|F2F1|=, ∴离心率e==. 答案  8.(2011·江西)若椭圆+=1的焦点在x轴上,过点作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________. 解析 由题可设斜率存在的切线的方程为y-=k(x-1)(k为切线的斜率), 即2kx-2y-2k+1=0, 由=1,解得k=-, 所以圆x2+y2=1的一条切线方程为3x+4y-5=0, 求得切点A, 易知另一切点B(1,0),则直线AB的方程为y=-2x+2. 令y=0得右焦点为(1,0), 令x=0得上顶点为(0,2).∴a2=b2+c2=5, 故得所求椭圆方程为+=1. 答案 +=1 三、解答题(共23分) 9.(11分)已知点P(3,4)是椭圆+=1(a>b>0)上的一点,F1,F2是椭圆的两焦点,若PF1⊥PF2. 试求:(1)椭圆的方程;(2)△PF1F2的面积. 解 (1)∵P点在椭圆上, ∴+=1.① 又PF1⊥PF2,∴·=-1,得:c2=25,② 又a2=b2+c2,③ 由①②③得a2=45,b2=20. 椭圆方程为+=1. (2)S△PF1F2=|F1F2|×4=5×4=20. 10.(12分)(2011·陕西)如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|. (1)当P在圆上运动时,求点M的轨迹C的方程; (2)求过点(3,0)且斜率为的直线被C所截线段的长度. 解 (1)设M的坐标为(x,y),P的坐标为(xP,yP), 由已知得 ∵P在圆上,∴x2+2=25,即C的方程为+=1. (2)过点(3,0)且斜率为的直线方程为y=(x-3), 设直线与C的交点为A(x1,y1),B(x2,y2), 将直线方程y=(x-3)代入C的方程,得 +=1,即x2-3x-8=0. ∴x1=,x2=. ∴线段AB的长度为|AB|=== =. B级  提高题 一、选择题(每小题5分,共10分) 1.(2012·丽水模拟)若P是以F1,F2为焦点的椭圆+=1(a>b>0)上的一点,且·=0,tan∠PF1F2=,则此椭圆的离心率为(  ). A. B. C. D. 解析 在Rt△PF1F2中,设|PF2|=1,则|PF2|=2.|F1F2|=,∴e==. 答案 A 2.(2011·汕头一模)已知椭圆+=1上有一点P,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P有(  ). A.3个 B.4个 C.6个 D.8个 解析 当∠PF1F2为直角时,根据椭圆的对称性知,这样的点P有2个;同理当∠PF2F1为直角时,这样的点P有2个;当P点为椭圆的短轴端点时,∠F1PF2最大,且为直角,此时这样的点P有2个.故符合要求的点P有6个. 答案 C 二、填空题(每小题4分,共8分) 3.(2011·镇江调研)已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点且·=c2,则此椭圆离心率的取值范围是________. 解析 设P(x,y),则·=(-c-x,-y)· (c-x,-y)=x2-c2+y2=c2① 将y2=b2-x2代入①式解得x2=, 又x2∈[0,a2],∴2c2≤a2≤3c2,∴e=∈. 答案  4.(2011·浙江)设F1,F2分别为椭圆+y2=1的左,右焦点,点A,B在椭圆上,若=5,则点A的坐标是________. 解析 根据题意设A点坐标为(m,n),B点坐标为(c,d).F1、F2分别为椭圆的左、右焦点,其坐标分别为(-,0)、(,0),可得=(m+,n),=(c-,d),∵=5,∴c=,d=.∵点A、B都在椭圆上,∴+n2=1,+2=1.解得m=0,n=±1,故点A坐标为(0,±1). 答案 (0,±1) 三、解答题(共22分) 5.(10分)(2011·大连模拟)设A,B分别为椭圆+=1(a>b>0)的左,右顶点,为椭圆上一点,椭圆长半轴的长等于焦距. (1)求椭圆的方程; (2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交异于A,B的点M,N,求证:∠MBN为钝角. (1)解 (1)依题意,得a=2c,b2=a2-c2=3c2, 设椭圆方程为+=1,将代入,得c2=1,故椭圆方程为+=1. (2)证明 由(1),知A(-2,0),B(2,0), 设M(x0,y0),则-2<x0<2,y=(4-x), 由P,A,M三点共线,得x=, =(x0-2,y0),=, ·=2x0-4+=(2-x0)>0, 即∠MBP为锐角,则∠MBN为钝角. 6.(★)(12分)(2011·西安五校一模)已知中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点M. (1)求椭圆C的方程; (2)是否存在过点P(2,1)的直线l1与椭圆C相交于不同的两点A,B,满足·=2?若存在,求出直线l1的方程;若不存在,请说明理由. 解 (1)设椭圆C的方程为+=1(a>b>0),由题意得解得a2=4,b2=3. 故椭圆C的方程为+=1. (2)假设存在直线l1且由题意得斜率存在,设满足条件的方程为y=k1(x-2)+1,代入椭圆C的方程得,(3+4k)x2-8k1(2k1-1)x+16k-16k1-8=0.因为直线l1与椭圆C相交于不同的两点A,B,设A,B两点的坐标分别为(x1,y1),(x2,y2), 所以Δ=[-8k1(2k1-1)]2-4(3+4k)(16k-16k1-8)=32(6k1+3)>0,所以k1>-. 又x1+x2=,x1x2=, 因为·=2, 即(x1-2)(x2-2)+(y1-1)(y2-1)=, 所以(x1-2)·(x2-2)(1+k)=|PM|2=. 即[x1x2-2(x1+x2)+4](1+k)=. 所以(1+k)==,解得k1=±. 因为k1>-,所以k1=. 于是存在直线l1满足条件,其方程为y=x. 【点评】 解决解析几何中的探索性问题的一般步骤为:,第一步:假设结论成立.,第二步:以存在为条件,进行推理求解.,第三步:明确规范结论,若能推出合理结果,经验证成立即可肯定正确.若推出矛盾,即否定假设.,第四步:回顾检验本题若忽略Δ>0这一隐含条件,结果会造成两解. 椭圆练习题2 一、填空题 1.椭圆的焦距为______________。 2.如果方程表示焦点在轴的椭圆,则的取值范围是_____________。 3.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点,则椭圆方程是_______。 4.椭圆的焦距是2,则的值是______________。 5.若椭圆长轴的长等于焦距的4倍,则这个椭圆的离心率为______________。 6.是椭圆上的一点,和是焦点,若∠F1PF2=30°,则△F1PF2的面积等于______________。 7.已知是椭圆上的一点,若到椭圆右准线的距离是,则点到左焦点的距离是______________。 8.椭圆的点到左准线的距离为5,则它到右焦点的距离为______________。 9.椭圆的中心到准线的距离是______________。 10.中心在原点,准线方程为x =±4,离心率为的椭圆方程是______________。 11.点P在椭圆上,则点P到直线的距离的最大值是___________。 12.直线被椭圆所截得的弦的中点坐标是_____________。 13.若椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是______________。 14.已知椭圆内有一点,是椭圆的右焦点,在椭圆上求一点,使之值为最小的的坐标是______________。 二、解答题 15.已知椭圆的对称轴为坐标轴,离心率,短轴长为,求椭圆的方程 16.已知A、B为椭圆+=1上两点,F2为椭圆的右焦点,若=,AB中点到椭圆左准线的距离为,求该椭圆方程。 17.一条变动的直线与椭圆+=1交于、两点,是上的动点,满足关系.若直线在变动过程中始终保持其斜率等于1.求动点的轨迹方程,并说明曲线的形状。 椭圆2参考答案 一、填空题 1.2 2. 3. 4.5 5. 6. 7. 8. 6 9.3 10. 11. 12. 13. 14. 二、解答题 15.由 ,∴椭圆的方程为:或. 16.设, ,由焦半径公式有, ∴即AB中点横坐标为,又左准线方程为,∴,即a=1,∴椭圆方程为。 17.设动点,动直线: ,并设, 是方程组的解,消去,得其中 ,∴,且,,又∵, .由,得,也即,于是有。 ,。由,得椭圆夹在直线间两段弧,且不包含端点.由,得椭圆。
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:椭圆经典练习题两套(带答案).doc
    链接地址:https://www.zixin.com.cn/doc/2394478.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork