平面向量练习题集标准答案.doc
《平面向量练习题集标准答案.doc》由会员分享,可在线阅读,更多相关《平面向量练习题集标准答案.doc(8页珍藏版)》请在咨信网上搜索。
平面向量练习题集答案 典例精析 题型一 向量的有关概念 【例1】 下列命题: ①向量的长度与的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量与向量是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解读】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;与是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: ①|a|=; ②(ab)c=a (bc); ③-=; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则+=2; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为( ) A.1B.2C.3D.4 【解读】选D.| a|=正确;(ab)c≠a(bc);-=正确;如下图所示, =++且=++, 两式相加可得2=+,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确. 题型二 与向量线性运算有关的问题 【例2】如图,ABCD是平行四边形,AC、BD交于点O,点M在线段DO上,且=,点N在线段OC上,且=,设=a,=b,试用a、b表示,,. 【解读】在▱ABCD中,AC,BD交于点O, 所以==(-)=(a-b), ===(+)=(a+b). 又=, =, 所以=+=b+ =b+×(a-b)=a+b, =+=+ ==×(a+b)=(a+b). 所以=- =(a+b)-(a+b)=a-b. 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足=+λ(+),若λ=时,则(+)的值为. 【解读】由已知得-=λ(+), 即=λ(+),当λ=时,得=(+), 所以2=+,即-=-, 所以=, 所以+=+=0, 所以 (+)=0=0,故填0. 题型三 向量共线问题 【例3】 设两个非零向量a与b不共线. (1)若=a+b, =2a+8b, =3(a-b), 求证:A,B,D三点共线; (2)试确定实数k,使ka+b和a+kb共线. 【解读】(1)证明:因为=a+b,=2a+8b,=3(a-b), 所以=+=2a+8b+3(a-b)=5(a+b)=5, 所以,共线.又因为它们有公共点B, 所以A,B,D三点共线. (2)因为ka+b和a+kb共线, 所以存在实数λ,使ka+b=λ(a+kb), 所以(k-λ)a=(λk-1)b. 因为a与b是不共线的两个非零向量, 所以k-λ=λk-1=0,所以k2-1=0,所以k=±1. 【点拨】(1)向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 【变式训练3】已知O是正三角形BAC内部一点,+2+3=0,则△OAC的面积与△OAB的面积之比是( ) A.B. C.2D. 【解读】如图,在三角形ABC中,+2+3=0,整理可得++2(+)=0.令三角形ABC中AC边的中点为E,BC边的中点为F,则点O在点F与点E连线的处,即OE=2OF. 设三角形ABC中AB边上的高为h,则S△OAC=S△OAE+S△OEC=OE (+)=OE·h, S△OAB=ABh=AB·h, 由于AB=2EF,OE=EF,所以AB=3OE, 所以==.故选B. 总结提高 1.向量共线也称向量平行,它与直线平行有区别,直线平行不包括共线(即重合)的情形,而向量平行则包括共线(即重合)的情形. 2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来. 3.当向量a与b共线同向时,|a+b|=|a|+|b|; 当向量a与b共线反向时,|a+b|=||a|-|b||; 当向量a与b不共线时,|a+b|<|a|+|b|. 典例精析 题型一 平面向量基本定理的应用 【例1】如图▱ABCD中,M,N分别是DC,BC中点.已知=a,=b,试用a,b表示,与 【解读】易知=+ =+, =+=+, 即 所以=(2b-a),=(2a-b). 所以=+=(a+b). 【点拨】运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟. 【变式训练1】已知D为△ABC的边BC上的中点,△ABC所在平面内有一点P,满足++=0,则等于( ) A.B. C.1 D.2 【解读】由于D为BC边上的中点,因此由向量加法的平行四边形法则,易知+=2,因此结合++=0即得=2,因此易得P,A,D三点共线且D是PA的中点,所以=1,即选C. 题型二 向量的坐标运算 【例2】 已知a=(1,1),b=(x,1),u=a+2b,v=2a-b. (1)若u=3v,求x;(2)若u∥v,求x. 【解读】因为a=(1,1),b=(x,1), 所以u=(1,1)+2(x,1)=(1,1)+(2x,2)=(2x+1,3), v=2(1,1)-(x,1)=(2-x,1). (1)u=3v⇔(2x+1,3)=3(2-x,1) ⇔(2x+1,3)=(6-3x,3), 所以2x+1=6-3x,解得x=1. (2)u∥v⇔(2x+1,3)=λ(2-x,1) ⇔ ⇔(2x+1)-3(2-x)=0⇔x=1. 【点拨】对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视. 【变式训练2】已知向量an=(cos,sin)(n∈N*),|b|=1.则函数y=|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2的最大值为. 【解读】设b=(cos θ,sin θ),所以y=|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2=(a1)2+b2+2(cos,sin)(cos θ,sin θ)+…+(a141)2+b2+2(cos,sin)(cos θ,sin θ)=282+2cos(-θ),所以y的最大值为284. 题型三 平行(共线)向量的坐标运算 【例3】已知△ABC的角A,B,C所对的边分别是a,b,c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,a-2). (1)若m∥n,求证:△ABC为等腰三角形; (2)若m⊥p,边长c=2,角C=,求△ABC的面积. 【解读】(1)证明:因为m∥n,所以asin A=bsin B. 由正弦定理,得a2=b2,即a=b.所以△ABC为等腰三角形. (2)因为m⊥p,所以m·p=0,即 a(b-2)+b(a-2)=0,所以a+b=ab. 由余弦定理,得4=a2+b2-ab=(a+b)2-3ab, 所以(ab)2-3ab-4=0. 所以ab=4或ab=-1(舍去). 所以S△ABC=absin C=×4×=. 【点拨】设m=(x1,y1),n=(x2,y2),则 ①m∥n⇔x1y2=x2y1;②m⊥n⇔x1x2+y1y2=0. 【变式训练3】已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=(2cosC-1,-2),n=(cos C,cos C+1).若m⊥n,且a+b=10,则△ABC周长的最小值为( ) A.10-5B.10+5 C.10-2D.10+2 【解读】由m⊥n得2cos2C-3cos C-2=0,解得cos C=-或cos C=2(舍去),所以c2=a2+b2-2abcos C=a2+b2+ab=(a+b)2-ab=100-ab,由10=a+b≥2⇒ab≤25,所以c2≥75,即c≥5,所以a+b+c≥10+5,当且仅当a=b=5时,等号成立.故选B. 典例精析 题型一 利用平面向量数量积解决模、夹角问题 【例1】 已知a,b夹角为120°,且|a|=4,|b|=2,求: (1)|a+b|; (2)(a+2b)·(a+b); (3)a与(a+b)的夹角θ. 【解读】(1)(a+b)2=a2+b2+2a·b =16+4-2×4×2×=12, 所以|a+b|=2. (2)(a+2b)·(a+b)=a2+3a·b+2b2 =16-3×4×2×+2×4=12. (3)a·(a+b)=a2+a·b=16-4×2×=12. 所以cos θ===,所以θ=. 【点拨】利用向量数量积的定义、性质、运算律可以解决向量的模、夹角等问题. 【变式训练1】已知向量a,b,c满足:|a|=1,|b|=2,c=a+b,且c⊥a,则a与b的夹角大小是. 【解读】由c⊥a⇒c·a=0⇒a2+a·b=0, 所以cos θ=-,所以θ=120°. 题型二 利用数量积来解决垂直与平行的问题 【例2】 在△ABC中,=(2,3), =(1,k),且△ABC的一个内角为直角,求k的值. 【解读】①当∠A=90°时,有·=0, 所以2×1+3·k=0,所以k=-; ②当∠B=90°时,有·=0, 又=-=(1-2,k-3)=(-1,k-3), 所以2×(-1)+3×(k-3)=0⇒k=; ③当∠C=90°时,有·=0, 所以-1+k·(k-3)=0, 所以k2-3k-1=0⇒k=. 所以k的取值为-,或. 【点拨】因为哪个角是直角尚未确定,故必须分类讨论.在三角形中计算两向量的数量积,应注意方向及两向量的夹角. 【变式训练2】△ABC中,AB=4,BC=5,AC=6, 求·+·+·. 【解读】因为2·+2·+2· =(·+·)+(·+·)+(·+·) =·(+)+·(+)+·(+) =·+·+· =-42-62-52=-77. 所以·+·+·=-. 题型三 平面向量的数量积的综合问题 【例3】数轴Ox,Oy交于点O,且∠xOy=,构成一个平面斜坐标系,e1,e2分别是与Ox,Oy同向的单位向量,设P为坐标平面内一点,且=xe1+ye2,则点P的坐标为(x,y),已知Q(-1,2). (1)求||的值及与Ox的夹角; (2)过点Q的直线l⊥OQ,求l的直线方程(在斜坐标系中). 【解读】(1)依题意知,e1·e2=, 且=-e1+2e2, 所以2=(-e1+2e2)2=1+4-4e1·e2=3. 所以||=. 又·e1=(-e1+2e2)·e1=-e+2e1e2=0. 所以⊥e1,即与Ox成90°角. (2)设l上动点P(x,y),即=xe1+ye2, 又⊥l,故⊥, 即[(x+1)e1+(y-2)e2]·(-e1+2e2)=0. 所以-(x+1)+(x+1)-(y-2)·+2(y-2)=0, 所以y=2,即为所求直线l的方程. 【点拨】综合利用向量线性运算与数量积的运算,并且与不等式、函数、方程、三角函数、数列、解读几何等相交汇,体现以能力立意的命题原则是近年来高考的命题趋势. 【变式训练3】在平面直角坐标系xOy中,点A(5,0).对于某个正实数k,存在函数f(x)=ax2(a>0),使得=λ (+)(λ为常数),其中点P,Q的坐标分别为(1,f(1)),(k,f(k)),则k的取值范围为( ) A.(2,+∞)B.(3,+∞) C.(4,+∞)D.(8,+∞) 【解读】如图所示,设=,=,+=,则=λ.因为P(1,a),Q(k,ak2),=(1,0),=(,),=(+1,),则直线OG的方程为y=x,又=λ,所以P(1,a)在直线OG上,所以a=,所以a2=1-. 因为||=>1,所以1->0,所以k>2.故选A. 8 / 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 习题集 标准答案
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文