哈工大人工智能导论实验报告.doc
《哈工大人工智能导论实验报告.doc》由会员分享,可在线阅读,更多相关《哈工大人工智能导论实验报告.doc(16页珍藏版)》请在咨信网上搜索。
(完整版)哈工大人工智能导论实验报告 人工智能导论实验报告 学院:计算机科学与技术学院 专业:计算机科学与技术 2016。12。20 目录 人工智能导论实验报告 1 一、 简介(对该实验背景,方法以及目的的理解) 3 1. 实验背景 3 2. 实验方法 3 3. 实验目的 3 二、 方法(对每个问题的分析及解决问题的方法) 4 Q1: Depth First Search 4 Q2: Breadth First Search 4 Q3: Uniform Cost Search 5 Q4: A* Search 6 Q5: Corners Problem: Representation 6 Q6: Corners Problem: Heuristic 6 Q7: Eating All The Dots: Heuristic 7 Q8: Suboptimal Search 7 三、 实验结果(解决每个问题的结果) 7 Q1: Depth First Search 7 Q2: Breadth First Search 9 Q3: Uniform Cost Search 10 Q4: A* Search 12 Q5: Corners Problem: Representation 13 Q6: Corners Problem: Heuristic 14 Q7: Eating All The Dots: Heuristic 14 Q8: Suboptimal Search 15 自动评分 15 四、 总结及讨论(对该实验的总结以及任何该实验的启发) 15 一、 简介(对该实验背景,方法以及目的的理解) 1. 实验背景 1) 自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈. 2) 吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。游戏的目的就是控制游戏的主角小精灵吃掉藏在迷宫内所有的豆子,并且不能被幽灵抓到。高效地浏览世界将是吃豆人掌握世界的第一步. 3) 通过本学期的学习我们已经初步掌握了人工智能的基本知识,在实验中则应用这些知识使用人工智能操纵吃豆人游戏. 2. 实验方法 1) 在本实验中, Pacman 智能体将找到通过迷宫世界的路径, 既包括到达一个指定的位置,也包括高效地搜集食物。我们编辑文件search。py和searchAgents。py,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆,并将其应用到Pacman场景,完成对相关人工智能功能的完善。 2) 在本实验中,我们对下面8个问题进行研究,针对每个问题提出解决方法,逐步完成吃豆人游戏: Q1: Depth First Search Q2: Breadth First Search Q3: Uniform Cost Search Q4: A* Search Q5: Corners Problem: Representation Q6: Corners Problem: Heuristic Q7: Eating All The Dots: Heuristic Q8: Suboptimal Search 3. 实验目的 1) 完成实验报告中的问题,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆; 2) 通过分析吃豆人游戏巩固课堂上所学内容; 3) 复习python语言的使用. 二、 方法(对每个问题的分析及解决问题的方法) Q1: Depth First Search 应用深度优先算法找到一个特定的位置的豆,我们通过depthFirstSearch函数实现深度优先搜索的功能。 深度优先遍历的方法是,从图中某顶点v出发: 1) 访问顶点v; 2) 依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问; 3) 若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。 深度优先搜索的顺序如下图所示: 在depthFirstSearch中,由于搜索过程中火重复访问到部分节点,所以需要对于每个节点设置标记,以指示该节点是否被访问过。 先将每个后继节点压入搜索栈中,然后以深度优先的顺序进行搜索,判定是否符合目标状态,并将符合结果的节点放入结果集。 Q2: Breadth First Search 应用宽度优先算法找到一个特定的位置的豆,我们通过breadthFirstSearch函数实现深度优先搜索的功能。 广度优先搜索算法的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。如下图: 在breadthFirstSearch中,大体的搜索思路与深度优先算法一致,只是搜索的次序发生了变化。 在这里注意,在深度优先搜索和广度优先搜索方法中,我们使用的图搜索算法是一样的,但是涉及到具体的数据结构却是不同的。在深度优先搜索算法中,我们使用栈进行操作,在深度优先搜索算法中,我们使用队列进行操作,如下图所示。这两种数据结构的不同之处就在于其中元素的输出次序,在深度优先搜索中需要按照压栈顺序的逆序进行搜索,咋子广度优先搜索中需要按照入队顺序的顺序进行搜索。 Q3: Uniform Cost Search 很多情况下,路径中的代价是可以改变的,在这个问题中,我们完成代价一致搜索方法。 代价一致搜索,其实就是一个贪心搜索,取代扩展深度最浅的节点,代价一致搜索扩展的是路径消耗最低的节点n。如果所有单步耗散都相等的话,这种算法就和广度优先搜索算法是一样的.不过,这样在扩展到一个具有能返回到同一状态的零耗散行动的节点时就会陷入无限循环。 在uniformCostSearch函数中,我们计算每条路径的总代价,将总代价作为优先级进行搜索,待搜索序列存储于队列中。对于每个节点,使用代价函数getCostOfActions计算其所产生的代价,并依次作为搜索的优先级进行搜索。同样的,对于每个节点添加是否被访问的标记. Q4: A* Search A*算法是一种静态路网中求解最短路最有效的直接搜索方法,也是许多其他问题的常用启发式算法,对代价一致搜索算法进行了改进,加入了一个估计代价h。公式表示为: f(n)=g(n)+h(n),其中 f(n) 是从初始状态经由状态n到目标状态的代价估计,g(n) 是在状态空间中从初始状态到状态n的实际代价,h(n) 是从状态n到目标状态的最佳路径的估计代价(对于路径搜索问题,状态就是图中的节点,代价就是距离)。 在本实验中,我们使用曼哈顿距离作为启发函数。在aStarSearch函数中,我们首先搜索具有最低组合成本和启发式的节点.类似于问题三,我们计算每个节点的代价,并以此为依据搜索产生结果集,在搜索的过程中,还需要标记节点是否已经被访问过。 Q5: Corners Problem: Representation 找到所有的角落,在角落迷宫的四个角上面有四个豆,通过这个函数找到一条访问所有四个角落的最短的路径. 在CornersProblem类中,我们使用__init__函数存储墙壁的位置,吃豆人的起点和角落位置,定义新的函数getStartState用于获得节点起始状态,isGoalState函数判断当前节点是否为目标节点,getSuccessors函数返回后继状态,所需的操作以及代价,getCostOfActions函数计算动作序列所需的代价。 查找后继节点时,在四个方向一次遍历,使用directionToVector移动位置,如果没有墙,则把下一个的状态,动作,花费的步数加入下一节点 Q6: Corners Problem: Heuristic 构建合适的启发函数,完成问题5中的角落搜索问题。 在问题五使用的CornersProblem类中定义cornersHeuristic函数,为角落问题构造启发函数。在cornersHeuristic函数中使用了GetNextNodes函数获取下一个节点,isGoal函数判断是否为目标. Q7: Eating All The Dots: Heuristic 用尽可能少的步数吃掉所有的豆子。这个问题利用之前A*算法可以很容易找到解,此种方法在这里不再详述. 下面在FoodSearchProblem类中定义函数foodHeuristic,构建合适的启发函数完成豆子搜索(启发式)问题. Q8: Suboptimal Search 次最优搜索,定义一个优先吃最近的豆子的函数,以此来提高搜索速度。 补充AnyFoodSearchProblem目标测试函数,并在ClosestDotSearchAgent当中添加findPathToClosestDot函数,用于寻找最近的豆子. 三、 实验结果(解决每个问题的结果) Q1: Depth First Search python pacman。py -l tinyMaze -p SearchAgent python pacman。py -l mediumMaze —p SearchAgent python pacman。py -l bigMaze -z 。5 -p SearchAgent Q2: Breadth First Search python pacman.py -l mediumMaze —p SearchAgent —a fn=bfs python pacman.py —l bigMaze —p SearchAgent -a fn=bfs -z .5 Q3: Uniform Cost Search python pacman。py -l mediumMaze -p SearchAgent —a fn=ucs python pacman。py —l mediumDottedMaze —p StayEastSearchAgent python pacman。py -l mediumScaryMaze —p StayWestSearchAgent Q4: A* Search python pacman。py —l bigMaze —z .5 -p SearchAgent -a fn=astar,heuristic=manhattanHeuristic Q5: Corners Problem: Representation python pacman。py -l tinyCorners -p SearchAgent -a fn=bfs,prob=CornersProblem python pacman。py -l mediumCorners —p SearchAgent -a fn=bfs,prob=CornersProblem Q6: Corners Problem: Heuristic python pacman.py -l mediumCorners —p AStarCornersAgent —z 0。5 Q7: Eating All The Dots: Heuristic python pacman。py —l trickySearch -p AStarFoodSearchAgent Q8: Suboptimal Search python pacman。py —l bigSearch —p ClosestDotSearchAgent —z .5 自动评分 四、 总结及讨论(对该实验的总结以及任何该实验的启发) 1. 在这个实验中,我们对深度优先搜索、广度优先搜索、代价一致搜索和A*算法四种搜索方法进行了python代码实现,对这四种方法有了进一步的了解。与深度优先搜索和广度优先上搜索方法相比,代价一致搜索方法的效率更高,在代价一致上搜索方法失效时,等同于广度优先搜索。A*算法是最有效的直接搜索算法,使用公式进行预处理,这样能够省略大量不必要的搜索路径,提高了效率. 2. 在启发式搜索中,估价函数非常重要,准确的估价函数能够增大搜索函数的效率并且具有相当高的准确性。由此,在启发式搜索中对位置的估价是十分重要的。采用了不同的估价可以有不同的效果。 3. 在本次实验中使用了大量python语言中的类,对之前的python知识有了很大的扩展。 16- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 哈工大 人工智能 导论 实验 报告
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文