湖北省十堰市东风高级中学2022年数学高一上期末调研试题含解析.doc
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖北省 十堰市 东风 高级中学 2022 数学 上期 调研 试题 解析
- 资源描述:
-
2022-2023学年高一上数学期末模拟试卷 考生请注意: 1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。 2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。 3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是( ) A. B. C. D. 2.设则( ) A. B. C. D. 3.的值是 A.0 B. C. D.1 4.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是( ) A. B. C. D. 5.下列结论中正确的是() A.当时,无最大值 B.当时,的最小值为3 C.当且时, D.当时, 6.已知集合,,则集合 A. B. C. D. 7.已知,则的值是 A.1 B.3 C. D. 8.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航.已知海面上的大气压强是,大气压强(单位:)和高度(单位:)之间的关系为(为自然对数的底数,是常数),根据实验知高空处的大气压强是,则当歼20战机巡航高度为,歼16D战机的巡航高度为时,歼20战机所受的大气压强是歼16D战机所受的大气压强的( )倍(精确度为0.01). A.0.67 B.0.92 C.1.09 D.1.26 9.若函数(,且)在区间上单调递增,则 A., B., C., D., 10.如图是函数在一个周期内的图象,则其解析式是( ) A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.若函数在区间上是单调递增函数,则实数的取值范围是_______. 12.已知,若对一切实数,均有,则___. 13.函数的单调递增区间为_____________ 14.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________. 15.已知函数,则=_________ 16.对数函数(且)的图象经过点,则此函数的解析式________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知二次函数满足:,且该函数的最小值为1. (1)求此二次函数的解析式; (2)若函数的定义域为(其中),问是否存在这样的两个实数m,n,使得函数的值域也为A?若存在,求出m,n的值;若不存在,请说明理由. 18.已知函数的图象过点 (1)求的值并求函数的值域; (2)若关于的方程有实根,求实数的取值范围; (3)若为偶函数,求实数的值 19.已知二次函数满足,且的最小值是 求的解析式; 若关于x的方程在区间上有唯一实数根,求实数m的取值范围; 函数,对任意,都有恒成立,求实数t的取值范围 20.已知函数. (1)求在闭区间的最大值和最小值; (2)设函数对任意,有,且当时,.求在区间上的解析式. 21.已知定义域为的函数是奇函数. (1)求实数的值; (2)判断的单调性并用定义证明; (3)已知不等式恒成立,求实数的取值范围. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、D 【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围 【详解】因为,所以.由,得. 当时,,又,则 因为在上的零点为,,,,且在内恰有3个零点,所以或解得. 故选:D 2、D 【解析】由指数函数、对数函数的单调性,并与0,1比较可得答案 【详解】由指数、对数函数的性质可知:,, 所以有. 故选:D 3、B 【解析】利用诱导公式和和差角公式直接求解. 【详解】 故选:B 4、D 【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D. 5、D 【解析】利用在单调递增,可判断A;利用均值不等式可判断B,D;取可判断C 【详解】选项A,由都在单调递增,故在单调递增,因此在上当时取得最大值,选项A错误; 选项B,当时,,故,当且仅当,即时等号成立,由于,故最小值3取不到,选项B错误; 选项C,令,此时,不成立,故C错误; 选项D,当时,,故,当且仅当,即时,等号成立,故成立,选项D正确 故选:D 6、B 【解析】利用一元二次方程的解法化简集合化简集合,利用并集的定义求解即可. 【详解】由一元二次方程的解法化简集合, 或, , 或,故选B. 【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合. 7、D 【解析】由题意结合对数的运算法则确定的值即可. 【详解】由题意可得:, 则 本题选择D选项. 【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力. 8、C 【解析】根据给定信息,求出,再列式求解作答. 【详解】依题意,,即,则歼20战机所受的大气压强, 歼16D战机所受的大气压强,, 所以歼20战机所受的大气压强是歼16D战机所受的大气压强的倍. 故选:C 9、B 【解析】函数在区间上单调递增, 在区间内不等于,故 当时,函数才能递增 故选 10、B 【解析】通过函数的图象可得到:A=3,,,则,然后再利用点在图象上求解., 【详解】由函数的图象可知:A=3,,, 所以, 又点在图象上, 所以, 即, 所以, 即, 因为, 所以 所以 故选:B 【点睛】本题主要考查利用三角函数的图象求解析式,还考查了运算求解的能力,属于中档题. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围 【详解】解:函数的对称轴方程为, 因为函数在区间上是单调递增函数, 所以,解得, 故答案为: 12、 【解析】列方程组解得参数a、b,得到解析式后,即可求得的值. 【详解】由对一切实数,均有 可知,即解之得 则,满足 故 故答案: 13、 【解析】先求出函数的定义域,再利用求复合函数单调区间的方法求解即得. 【详解】依题意,由得:或,即函数的定义域是, 函数在上单调递减,在上单调递增,而在上单调递增, 于是得在是单调递减,在上单调递增, 所以函数的单调递增区间为. 故答案为: 14、(答案不止一个) 【解析】根据偶函数和零点的定义进行求解即可. 详解】函数符合题目要求,理由如下: 该函数显然满足①; 当时,,所以有, 当时,,所以有,因此该函数是偶函数,所以满足② 当时,,或, 当时,,或舍去,所以该函数有3个零点,满足③, 故答案为: 15、 【解析】按照解析式直接计算即可. 【详解】. 故答案为:-3. 16、 【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式. 【详解】由已知条件可得,可得,因为且,所以,. 因此,所求函数解析式为. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1);(2)存在,,. 【解析】(1)设,由,求出值,可得二次函数的解析式; (2)分①当时,②当时,③当时,三种情况讨论,可得存在满足条件的,,其中, 【详解】解:(1)依题意,可设, 因,代入得, 所以. (2)假设存在这样m,n,分类讨论如下: 当时,依题意,即两式相减,整理得 ,代入进一步得,产生矛盾,故舍去; 当时,依题意, 若,,解得或(舍去); 若,,产生矛盾,故舍去; 当时,依题意,即 解得,产生矛盾,故舍去 综上:存在满足条件的m,n,其中, 18、(1)(2)(3) 【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出 【详解】(1)因为函数图象过点,所以,解得. 则, 因为,所以, 所以函数的值域为. (2)方程有实根,即,有实根, 构造函数, 则, 因为函数在R上单调递减,而在(0,)上单调递增, 所以复合函数是R上单调递减函数 所以在上,最小值,最大值为,即, 所以当时,方程有实根 (3),是R上的偶函数, 则满足, 即恒成立, 则恒成立, 则恒成立, 即恒成立, 故,则恒成立, 所以. 【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题 19、(1)(2) (3) 【解析】(1)因,故对称轴为,故可设,再由得.(2)有唯一实数根可以转化为与有唯一的交点去考虑.(3),任意都有不等式成立等价于,分、、和四种情形讨论即可. 解析:(1)因,对称轴为,设,由得,所以. (2)由方程得,即直线与函数的图象有且只有一个交点,作出函数在的图象.易得当或时函数图象与直线只有一个交点,所以的取值范围是. (3)由题意知. 假设存在实数满足条件,对任意都有成立,即,故有,由. 当时,在上为增函数,,所以; 当时,,.即,解得,所以. 当时, 即解得.所以. 当时,,即,所以,综上所述,, 所以当时,使得对任意都有成立. 点睛:(1)求二次函数的解析式,一般用待定系数法,有时也需要根据题设的特点合理假设二次函数的形式(如双根式、顶点式、一般式); (2)不等式对任意的恒成立可以等价转化为恒成立. 20、(1)最大值为,最小值为;(2). 【解析】 (1)利用两角和的正弦公式,二倍角公式以及辅助角公式将化简,再由三角函数的性质求得最值;(2)利用时,,对分类求出函数的解析式即可. 【详解】(1) , 因为,所以, 则, , 所以的最大值为;的最小值为; (2)当时, , 当时,, , 当时,; , 综上:在区间上的解析式为: . 【点睛】关键点睛:本题考查了三角函数中的恒等变换应用,三角函数的周期性及其求法.熟练掌握两角和的正弦公式,二倍角公式以及辅助角公式是解决本题的关键. 21、(1);(2)减函数,证明见解析;(3) . 【解析】(1)根据可求的值,注意检验. (2)利用增函数的定义可证明在上是减函数. (3)利用函数的奇偶性和单调性可把原不等式化为,利用对数函数的性质可求的取值范围. 【详解】(1)是上的奇函数,,得, 此时,,故为奇函数, 所以. (2)为减函数,证明如下: 设是上任意两个实数,且, , ,,即,,, ,即,在上是减函数. (3)不等式恒成立,. 是奇函数,,即不等式恒成立 又在上是减函数,不等式恒成立, 当时,得,. 当时,得,. 综上,实数的取值范围是. 【点睛】本题考查了函数的奇偶性与单调性,考查了不等式恒成立问题,考查了应用对数函数单调性解与对数有关的不等式,涉及了指数函数与对数函数的图象与性质,体现了转化思想在解题中的运用 .展开阅读全文
咨信网温馨提示:1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。




湖北省十堰市东风高级中学2022年数学高一上期末调研试题含解析.doc



实名认证













自信AI助手
















微信客服
客服QQ
发送邮件
意见反馈



链接地址:https://www.zixin.com.cn/doc/2386335.html