分享
分销 收藏 举报 申诉 / 4
播放页_导航下方通栏广告

类型1.5《函数y=Asin(ωx+φ)的图象》说课稿.doc

  • 上传人:精****
  • 文档编号:2380555
  • 上传时间:2024-05-29
  • 格式:DOC
  • 页数:4
  • 大小:89.50KB
  • 下载积分:5 金币
  • 播放页_非在线预览资源立即下载上方广告
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数y=Asinωx+φ的图象 1.5 函数 Asin 图象 说课稿
    资源描述:
    1.5《函数y=Asin(ωx+φ)的图象》说课稿 尊敬的各位评委、老师大家好!我叫周拥军,今天我说课的内容是人教A版数学必修4第一章第五节《函数y=Asin(ωx+φ)的图象》.新课标指出,学生是教学的主体,教师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的基础上,建构新的知识体系.本节课的教学中,我将尝试这种理念. 下面我将从教材分析、教法学法分析、教学过程及教学评价四个方面进行说明. 【一】教材分析 1、教材的地位和作用 本节课所讲的内容是高中数学必修4第一章《三角函数》第五节的内容,三角函数是中学数学的重要内容之一,它的基础是几何中的相似形和圆,研究方法主要是代数中的式子变形和图形分析,因此三角函数的研究已经初步把几何与代数联系起来了。高等数学以及其他应用技术学科,都要经常用到三角函数及其性质,因此这些内容既是解决生产实际问题的工具,又是学习高等数学等学科的基础,也是我们要着重学习和加强的环节。在本章第四节“三角函数的图象和性质”的内容中,教材通过正余弦曲线的形状特点的研究得到了正余弦函数的性质,进一步得出函数y=Asin(ωx+φ)的图象,由此揭示这类函数的图象和正弦函数曲线的关系以及A、ω、φ的物理意义,使学生根据周期函数和最小正周期的意义,以及从图象变化的过程中,进一步了解正余弦函数的性质,从而向学生揭示了得到函数y=Asin(ωx+φ)的图象的一种思维过程:即由正弦曲线变换得到,这一思维过程并不表示实际画图方法,但充分体现了由简单到复杂、特殊到一般的化归的数学思想,所以本节承载着三角函数这一章中的重要作用。三角函数中许多化简、求值题以及研究函数性质的问题都涉及到Asin(ωx+φ) 的形式,研究它的图象能使学生将已有的知识形成体系,有助于培养学生利用数形结合的思想解决问题。同时,本节课在教学中力图向学生展示尝试观察、归纳、类比、联想等数学思想方法。希望通 2、学情分析 学生学习了正、余弦函数的图象和性质,已经具有用数学知识解决这类实际问题的能力;另外,本班学生思维较为活跃,学习积极性教高,初步形成对数学问题进行合作探究的意识与能力. 根据《课程标准》关于本节课的教学要求,以贯穿创新意识和实践能力的培养为宗旨,以教材的特点和所教学生的学情为出发点,设定如下三维教学目标: 2、教学目标 【知识与技能】 ①掌握φ、ω、Α的变化对函数图象的形状及位置的影响; ②进一步研究由φ变换、ω变换、Α变换构成的综合变换。 【过程与方法】 通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想. 【情感态度与价值观】 ①数形结合思想的渗透; ②培养学生“由简单到复杂、由特殊到一般”的辩化归思想和辩证思想; ③培养学生的探究能力和协作学习的能力,从而提高学习数学的兴趣。 根据上述教学目标,本节课的教学重难点是: 3、教学重点、难点 【重点】 将考察参数Α、ω、φ对函数y=Asin(ωx+φ)的图象的影响进行分解,从而学习如何将一个复杂问题分解为若干简单问题的方法. 【难点】 1、观察图象变换中发现规律,并能用自己的语言来表达。 2、φ变换、ω变换、Α变换的不同顺序对图象的影响。 【二】教法、学法分析 1、教法 为了实现本节课的教学目标,我在教法上采取了: (1)通过学生熟悉的实际生活问题引入课题,为新课的学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性. (2)在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利完成书面表达. 2、学法 在学法上我重视了: (1)引导学生利用图形直观启迪思维,在小组自主探究、合作交流中,完成由特殊到一般的思维飞跃. (2)让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力. 【三】教学过程 参数Α、ω、φ对函数y=Asin(ωx+φ)的图象的影响是本节课的重点,为了掌握重点,突破难点,我在教学设计上采用了下列六个环节: 创设情景,提出问题→探究发现,寻找方法→自我尝试,运用方法→回顾反思,深化认识→小结归纳,拓展深化→作业布置,提高升华. 一、创设情景,提出问题 (问题情境)如图(1)是某次实验测得的交流电的电流y随时间x变化的图象,图(2)是放大后的图象: [教师活动]提出问题: 问题1:观察交流电电流随时间变化的图象,它与正弦曲线有什么关系? 问题2:你认为可以怎样讨论参数A、ω、φ对函数y=Asin(ωx+φ)的图象的影响? [设计意图]问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始.这里,通过两个问题,引发学生的进一步学习的好奇心,从而建立函数y=sinx的图象与函数y=Asin(ωx+φ)的图象的联系. 二、探究发现,寻找方法 [学生活动]对于问题1,学生比较容易回答,但问题2对于学生来说却显得较为抽象,不易回答. [教师活动]为了解决问题2,组织学生进行小组讨论,引导学生将考察参数Α、ω、φ对函数y=Asin(ωx+φ)的图象的影响进行分解,从而学习如何将一个复杂问题分解为若干简单问题的方法. 在学生知道要将参数Α、ω、φ对函数y=Asin(ωx+φ)的图象的影响进行分解时,进一步提出问题3: 问题3:分别在y=sin(x+)和y=sinx的图象上各恰当地选取一个纵坐标相同的点,同时移动这两个点并观察其横坐标的变化,你能否从中发现φ对图象有怎样的影响? [教师活动]在问题3的解决中,教师用计算机作出函数图象,动态演示变换过程,引导学生观察变化过程中的不变量,得出它们的横坐标总是相差的结论. 在学生通过观察y=sin(x+)图象上点的坐标和y=sinx的图象上点的坐标的关系,获得了φ对y=Asin(ωx+φ)的图象的影响的具体认识的同时,提出: 问题4:对φ任取不同的值,作出y=sin(x+φ)的图象,看看与y=sinx的图象是否有类似的关系? [学生活动]学生小组进行合作,作出φ取不同值时,函数y=sin(x+φ)的图象,观察图象,发现数量关系,由具体到抽象,由模糊到清晰,逐步归纳、概括、抽象出φ对y=sin(x+φ)的图象的影响,从而概括总结出从正弦曲线出发,经历图象的变换得到y=sin(x+φ)的图象. [设计意图]将学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程,对于难懂、难教、难学的内容的解决非常有益.高一第二学期的学生已经具备了一定的数学思维、概括能力,让他们置身于这种数学活动中,能很好的解决本节课重点. 三、自我尝试、运用方法 为了让学生更深刻的体会到由简单到复杂,特殊到一般的化归思想,及时的运用方法是非常必要的. 问题5:你能用上述研究方法,讨论一下参数ω对函数y=sin(ωx+)的图象的影响吗? [学生活动]在这个问题的讨论解决中,学生的思维容易受前面的影响,继续考虑由函数y=sinx的图象到函数y=sin (ωx+)的图象是通过某种平移得来. [教师活动]教师在巡视的过程中,提醒学生从具体到一般的思路,并从自变量的变化上进行考虑得出结论,并和教科书相关段落对照.在学生完成相应的讨论之后,利用几何画板验证学生的讨论结果.并提出: 问题6:类似的,你能讨论一下参数A对y=Asin (2x+)的图象的影响吗? [设计意图]在学生已有认知结构的基础上再次提出问题,使得学生能够对所学习的方法、知识有更加深刻的认识,巩固已有的经验. [学生活动]学生作出A取不同值时,函数y=Asin (2x+)的图象,并发现与y=sin (2x+)的图象的关系.概括A对y=Asin (2x+)的图象的影响规律. 通过上面的讨论、总结学习,学生基本上已经掌握参数A、ω、φ分别对函数y=Asin(ωx+φ)的图象的影响,那如何才能由函数y=sinx的图象得到y=Asin(ωx+φ)的图象呢? 问题7:画出函数y=2sin(x-)的简图. [学生活动]学生相互讨论,尝试自主进行作图. [教师活动]教师深入学生中,与学生交流,了解学生思考问题的进展过程,及时指导学生从本节课掌握的图象的变换入手进行解决.纠正学生在通过变换作图过程中出现的错误. [学生活动]学生自我归纳由函数y=sinx的图象变换到y=2sin(x-)的步骤:将正弦曲线上所有点向右平移个单位长度,得到y=sin(x-)的图象 把y=sin(x-)的图象上所有点的横坐标伸长到原来的3倍(纵坐标不变),得到y=sin(x-)的图象 把所得图象上所有点的纵坐标伸长到原来的2倍(横坐标不变). 问题8:你能总结出由y=sinx的图象变换到y=Asin(ωx+φ) 的图象的步骤吗? [师生活动]由师生共同总结分析得出由y=sinx的图象变换到y=Asin(ωx+φ) 的图象的步骤.在总结分析变换步骤的过程中,需要提醒学生注意可以按照不同的方式进行变换. [设计意图]有效的数学学习过程,不能单纯的模仿与记忆,数学思维的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究,以突破本节课的难点. 四、回顾反思,深化认识 问题9:完成课本P53练习1、2 [学生活动]学生独立完成练习 [设计意图]为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了这两个练习,通过学生的独立完成,教师引导来巩固新知识. 五、小结归纳,拓展深化 在小结归纳中我将从学生掌握的知识,方法和体验入手,带领学生从以下两个方面进行小结: 问题10:(1)这节课你们学到了什么?(2)你又掌握了哪些学习方法? 六、作业布置,提高升华 [教师活动]布置作业: 必做:必修4习题1.5A组第2、3两题 选做:第5题 设计意图:通过两方面的作业,使学生养成先看书,后做作业的习惯.另外书面作业的布置实行弹性布置,避免一刀切,使学生在完成基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实际的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成. 【四】教学评价学生学习的效果评价当然重要,但是更重要的是学生学习的过程评价.教师应当高度重视学生学习过程中的参与度、自信心、团队精神、合作意识、独立思考习惯的养成、数学发现的能力,以及学习的兴趣和成就感.学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多的学生主动参与,师生对话可以实现师生合作,适度的研讨可以促进生生交流以及团队精神,知识的生成和问题的解决可以让学生感受到成功的喜悦,缜密的思考可以培养学生独立思考的习惯.让学生在教师评价、学生评价以及自我评价的过程中体验知识的积累、探索能力的长进和思维品质的提高,为学生的可持续发展打下基础.
    展开阅读全文
    提示  咨信网温馨提示:
    1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
    2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
    3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
    4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
    5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
    6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

    开通VIP折扣优惠下载文档

    自信AI创作助手
    关于本文
    本文标题:1.5《函数y=Asin(ωx+φ)的图象》说课稿.doc
    链接地址:https://www.zixin.com.cn/doc/2380555.html
    页脚通栏广告

    Copyright ©2010-2026   All Rights Reserved  宁波自信网络信息技术有限公司 版权所有   |  客服电话:0574-28810668    微信客服:咨信网客服    投诉电话:18658249818   

    违法和不良信息举报邮箱:help@zixin.com.cn    文档合作和网站合作邮箱:fuwu@zixin.com.cn    意见反馈和侵权处理邮箱:1219186828@qq.com   | 证照中心

    12321jubao.png12321网络举报中心 电话:010-12321  jubao.png中国互联网举报中心 电话:12377   gongan.png浙公网安备33021202000488号  icp.png浙ICP备2021020529号-1 浙B2-20240490   


    关注我们 :微信公众号  抖音  微博  LOFTER               

    自信网络  |  ZixinNetwork