应用回归分析第四版课后习题答案解析-全-何晓群-刘文卿.doc
《应用回归分析第四版课后习题答案解析-全-何晓群-刘文卿.doc》由会员分享,可在线阅读,更多相关《应用回归分析第四版课后习题答案解析-全-何晓群-刘文卿.doc(9页珍藏版)》请在咨信网上搜索。
(完整word)应用回归分析第四版课后习题答案解析_全_何晓群_刘文卿 实用回归分析第四版 第一章 回归分析概述 1。3 回归模型中随机误差项ε的意义是什么? 答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2….。xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素. 1。4 线性回归模型的基本假设是什么? 答:线性回归模型的基本假设有:1.解释变量x1.x2…。xp是非随机的,观测值xi1。xi2….。xip是常数。2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^2 3.正态分布的假定条件为相互独立。4。样本容量的个数要多于解释变量的个数,即n〉p. 第二章 一元线性回归分析 思考与练习参考答案 2.1 一元线性回归有哪些基本假定? 答: 假设1、解释变量X是确定性变量,Y是随机变量; 假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi)=0 i=1,2, …,n Var (εi)=s2 i=1,2, …,n Cov(εi, εj)=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X之间不相关: Cov(Xi, εi)=0 i=1,2, …,n 假设4、ε服从零均值、同方差、零协方差的正态分布 εi~N(0, s2 ) i=1,2, …,n 2.3 证明(2。27式),Sei =0 ,SeiXi=0 。 证明: 其中: 即: Sei =0 ,SeiXi=0 2。5 证明是β0的无偏估计. 证明: 2.6 证明 证明: 2。7 证明平方和分解公式:SST=SSE+SSR 证明: 2。8 验证三种检验的关系,即验证: (1);(2) 证明:(1) (2) 2。9 验证(2.63)式: 证明: 其中: 2。10 用第9题证明是s2的无偏估计量 证明: 第三章 1。一个回归方程的复相关系数R=0.99,样本决定系数R2=0。9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。因为: 1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F检验或者关于回归系数的t检验,所建立的回归方程都没能通过。 2. 样本决定系数和复相关系数接近于1只能说明Y与自变量X1,X2,…,Xp整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F检验和t检验. 3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R2的增大与拟合好坏无关. 2。被解释变量的期望值与解释变量的线性方程为: (3-2) 称为多元总体线性回归方程,简称总体回归方程。 对于组观测值,其方程组形式为: (3-3) 即 其矩阵形式为 =+ 即 (3-4) 其中 为被解释变量的观测值向量;为解释变量的观测值矩阵;为总体回归参数向量;为随机误差项向量. 多元回归线性模型基本假定:课本P57 第四章 4。3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与方法。 答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计.然而在异方差的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由OLS求出的仍然是的无偏估计,但不再是最小方差线性无偏估计.所以就是:对较大的残差平方赋予较小的权数,对较小的残差平方赋予较大的权数。这样对残差所提供信息的重要程度作一番校正,以提高参数估计的精度。 加权最小二乘法的方法: 4。4简述用加权最小二乘法消除多元线性回归中异方差性的思想与方法。 答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回归的类似.多元线性回归加权最小二乘法是在平方和中加入一个适当的权数 ,以调整各项在平方和中的作用,加权最小二乘的离差平方和为: (2) 加权最小二乘估计就是寻找参数的估计值使式(2)的离差平方和达极小。所得加权最小二乘经验回归方程记做 (3) 多元回归模型加权最小二乘法的方法: 首先找到权数,理论上最优的权数为误差项方差的倒数,即 (4) 误差项方差大的项接受小的权数,以降低其在式(2)平方和中的作用; 误差项方差小的项接受大的权数,以提高其在平方和中的作用.由(2)式求出的加权最小二乘估计就是参数的最小方差线性无偏估计。 一个需要解决的问题是误差项的方差是未知的,因此无法真正按照式(4)选取权数.在实际问题中误差项方差通常与自变量的水平有关(如误差项方差随着自变量的增大而增大),可以利用这种关系确定权数。例如与第j个自变量取值的平方成比例时, 即=k时,这时取权数为 (5) 更一般的情况是误差项方差与某个自变量(与|ei|的等级相关系数最大的自变量)取值的幂函数成比例,即=k,其中m是待定的未知参数.此时权数为 (6) 这时确定权数 的问题转化为确定幂参数m的问题,可以借助SPSS软件解决。 第五章 5。3 如果所建模型主要用于预测,应该用哪个准则来衡量回归方程的优劣? 答:如果所建模型主要用于预测,则应使用统计量达到最小的准则来衡量回归方程的优劣。 5。4 试述前进法的思想方法. 答:前进法的基本思想方法是:首先因变量Y对全部的自变量x1,x2,。。。,xm建立m个一元线性回归方程, 并计算F检验值,选择偏回归平方和显著的变量(F值最大且大于临界值)进入回归方程。每一步只引入一个变量,同时建立m-1个二元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的两变量变量(F值最大且大于临界值)进入回归方程。在确定引入的两个自变量以后,再引入一个变量,建立m-2个三元线性回归方程,计算它们的F检验值,选择偏回归平方和显著的三个变量(F值最大)进入回归方程。不断重复这一过程,直到无法再引入新的自变量时,即所有未被引入的自变量的F检验值均小于F检验临界值Fα(1,n—p—1),回归过程结束。 5.5 试述后退法的思想方法。 答:后退法的基本思想是:首先因变量Y对全部的自变量x1,x2,.。。,xm建立一个m元线性回归方程, 并计算t检验值和F检验值,选择最不显著(P值最大且大于临界值)的偏回归系数的自变量剔除出回归方程。每一步只剔除一个变量,再建立m-1元线性回归方程,计算t检验值和F检验值,剔除偏回归系数的t检验值最小(P值最大)的自变量,再建立新的回归方程。不断重复这一过程,直到无法剔除自变量时,即所有剩余p个自变量的F检验值均大于F检验临界值Fα(1,n-p-1),回归过程结束. 第六章 消除多重共线性的方法 7.2岭回归的定义及统计思想是什么? 答:岭回归法就是以引入偏误为代价减小参数估计量的方差的一种回归方法,其统计思想是对于(X’X)—1为奇异时,给X'X加上一个正常数矩阵D, 那么X’X+D接近奇异的程度就会比X′X接近奇异的程度小得多,从而完成回归。但是这样的回归必定丢失了信息,不满足blue。但这样的代价有时是值得的,因为这样可以获得与专业知识相一致的结果。 7。3 选择岭参数k有哪几种方法? 答:最优是依赖于未知参数和的,几种常见的选择方法是: 岭迹法:选择的点能使各岭估计基本稳定,岭估计符号合理,回归系数没有不合乎经济意义的绝对值,且残差平方和增大不太多; 方差扩大因子法:,其对角线元是岭估计的方差扩大因子。要让; 残差平方和:满足成立的最大的值。 7.4 用岭回归方法选择自变量应遵循哪些基本原则? 答:岭回归选择变量通常的原则是: 1. 在岭回归的计算中,我们通常假定涉及矩阵已经中心化和标准化了,这样可以直接比较标准化岭回归系数的大小。我们可以剔除掉标准化岭回归系数比较稳定且绝对值很小的自变量; 2. 当k值较小时,标准化岭回归系数的绝对值并不很小,但是不稳定,随着k的增加迅速趋近于零。像这样岭回归系数不稳定、震动趋于零的自变量,我们也可以予以剔除; 3. 去掉标准化岭回归系数很不稳定的自变量.如果有若干个岭回归系数不稳定,究竟去掉几个,去掉那几个,要根据去掉某个变量后重新进行岭回归分析的效果来确定。 8章 主成分回归建模的思想与步骤 偏最小二乘建模的思想与步骤 两个论述,在课本上 enjoy the trust of 得到..。的信任 have / put trust in 信任 in trust 受托的,代为保管的 take .。.on trust对.。.不加考察信以为真 trust on 信赖 give a new turn to 对~~予以新的看法 turn around / round 转身,转过来,改变意见turn back 折回,往回走turn … away 赶走……,辞退……,把……打发走,转脸不睬,使转变方向 turn to… 转向……,(for help)向……求助,查阅, 变成;着手于think through… 思考……直到得出结论,想通think of 想到,想起,认为,对……有看法/想法 欢迎您的光临,Word文档下载后可修改编辑.双击可删除页眉页脚.谢谢!让我们共同学习共同进步!学无止境.更上一层楼. ..........- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 回归 分析 第四 课后 习题 答案 解析 刘文卿
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文