平行四边形知识点分类归纳练习题.doc
《平行四边形知识点分类归纳练习题.doc》由会员分享,可在线阅读,更多相关《平行四边形知识点分类归纳练习题.doc(8页珍藏版)》请在咨信网上搜索。
初二下数学第18章平行四边形期中复习卷 班级: 姓名: 座号: 平行四边形的性质 1、平行四边形定义: 的四边形是平行四边形. 表示方法:用 “□” 表示平行四边形,例如:平行四边形ABCD记作 □ ABCD,读作“平行四边形ABCD”. 2、平行四边形的性质: (1)角:平行四边形的对角_________; (2)边:平行四边形两组对边 ; (3)对角线:平行四边形的对角线_________; (4)面积:①;②平行四边形的对角线将平行四边形分成4个面积相等的三角形. 练习题: 1 . 已知一个平行四边形两邻边的长分别为6和8,那么它的周长为_____. 2.如图,□ABCD中,BC=BD,∠C=70°,则∠ADB的度数是______,∠A的度数是_____. 3. 如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是_____. 平行四边形的判定 平行四边形的判定方法:(5种方法) 边: (1) 定义:两组对边 的四边形是平行四边形 (2) 两组对边 的四边形是平行四边形 (3)一组对边 的四边形是平行四边形角: 角: (4) 两组对角 的四边形是平行四边形。 对角线: (5) 对角线 的四边形是平行四边形。 练习: 1. 点A、B、C、D在同一平面内,从①AB//CD;②AB=CD;③BC//AD;④BC=AD四个条件中任意选两个,不能使四边形ABCD是平行四边形的选法有( ) 第2题图 B A C O x y A.①② B.②③ C. ①③ D. ③④ 2、如图,在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D的坐标是 3. 已知:如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF. 求证:四边形DEBF是平行四边形 4. 如图,在□ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?请说明理由. 三角形中位线 1、三角形的中位线定义:连接 的线段叫做三角形的中位线。 2、三角形中位线定理:三角形的中位线 第三边,并且等于_____________________. 名师点金:三角形的中位线具有两方面的性质:一是位置上的平行关系,二是数量上的倍分关系.因此,当题目中给出三角形两边的中点时,可以直接连出中位线;当题目中给出一边的中点时,往往需要找另一边的中点,作出三角形的中位线. 练习:1、如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为 . 2、已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形 矩形的性质 1. 矩形定义: 的平行四边形是矩形. 2. 矩形的性质: ①边:对边 ; ②角:对角 ; ③对角线:对角线 ; ④对称性:轴对称图形(对边中点连线所在直线,2条). 练习题:1. 如图所示,矩形ABCD的两条对角线相交于点O,图中有_______个直角三角形,有____个等腰三角形. 2.如图所示,矩形ABCD的两条对角线相交于点O,若 ∠AOD=60°,OB=4,则OA=____ ,AC=_____ ,BD=_____ ,CD=_____. 3.如图所示,在矩形ABCD中,对角线AC,BD交于点O,过顶点C作CE∥BD,交A孤延长线于点E,求证:AC=CE. 矩形的判定 判定一个四边形是矩形的方法: (1)矩形的定义:有一个角是________的_________是矩形; (2)有三个角是__________的四边形是矩形; (3)对角线______的__________是矩形. 练习: 1.下列命题中正确的是( ) A.对角线相等的四边形是矩形 B.对角相等且有一个角是直角的四边形是矩形 C.有一个角是直角的四边形是矩形 D.内角都相等的四边形是矩形 2.矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是( ) A.(1,-4) B.(-8,-4) C.(1,-3) D.(3,-4) 3.下列检查一个门框是否为矩形的方法中正确的是( ) A.测量两条对角线,是否相等 B.测量两条对角线,是否互相平分 C.用曲尺测量门框的三个角,是否都是直角 D.用曲尺测量对角线,是否互相垂直 4.如图所示,在四边形ABCD中,∠A=∠ABC=90°,BD=CD,E是BC的中点,求证:四边形ABED是矩形. 5.如图所示,延长等腰△ABC的腰BA至点D,使AD=BA,延长腰CA至点E,使AE=CA,连结CD,DE,EB,求证:四边形BCDE是矩形. 直角三角形斜边上的中线 直角三角形性质:直角三角形斜边上的中线等于斜边的_______. 练习: 1.在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若AB=4,则CD=_______. 2.如图1所示,在Rt△ABC中,∠ACB=90°,CD是边AB上的中线,若∠ADC=70°,则∠ACD=_______. (1) (2) 3.如图2所示,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC的中点,若AB=8,BC=6,AC=4,则△DEF的周长是________. 菱形的性质 1、 菱形定义:有一组 的平行四边形是菱形。 2、 菱形性质:①边: ; ②角: ; ③对角线: ④对称性:轴对称图形(对角线所在直线,2条). 练习: 1.如图,菱形ABCD的两条对角线相交于O,若AC=8,BD=6,则AB= . 2. 如图,菱形ABCD中,AB=AC,求∠BCD的度数. 菱形的判定 判定菱形的方法: (1)菱形的定义:有一组 的平行四边形是菱形; (2) 的四边形是菱形; (3)对角线 的平行四边形是菱形. 练习: 1.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB. (1)求证:四边形ADCE是菱形; (2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号) 2. 如图,在中,,D、E、F分别是、、边上的中点. (1)求证:四边形是菱形; (2)若cm,求菱形的周长. 正方形的性质 1、正方形定义:有一组_________且有_________的平行四边形 叫做正方形。正方形既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征. 2、正方形性质:①边:_________; ②角:_________; ③对角线:对角线互相_________且_________,每一条对角线平分一组对角,即对角线与边的夹角为450; ④对称性:轴对称图形(其中2条对称轴为对角线所在位置,另外2条为对边中点连线所在的直线). 练习: 1. 一个正方形的对角线长3cm,则它的面积为_______。 2. 正方形ABCD的边长为4,两条对角线相交于点O, 则∠AOB= °,∠BAO= °,对角线长为__________。 图1 2. 如图1,在正方形ABCD的外侧,作等边△ADE,则 ∠AEB=_____ ° . 3. 如图2,延长正方形ABCD的边AB到E,使BE=AC,则 ∠E= °. 图3 图2 4. 如图3,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=_____ ° 正方形的判定 1、判定一个四边形是正方形的方法: (1)定义:有_______________且__________的平行四边形 叫做正方形; (2)既是矩形又是菱形的是正方形。 2、识别正方形的常用方法 ① 先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等. ② 先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角. 练习: 1..下列条件之一能使菱形ABCD是正方形的为( ) ①AC⊥BD ②∠BAD=90° ③AB=BC ④AC=BD. A.①③ B.②③ C.②④ D.①②③ 2.如图1,矩形中,平分,于。求证:四边形是正方形。 3. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. (1)求证:四边形ADCE为矩形; (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明. 4、如图所示,在RtΔABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于E,DF⊥AC于F,试说明四边形CEDF为正方形。 8- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平行四边形 知识点 分类 归纳 练习题
咨信网温馨提示:
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。
关于本文