电磁场与电磁波标准答案(第四版)谢处方.doc
《电磁场与电磁波标准答案(第四版)谢处方.doc》由会员分享,可在线阅读,更多相关《电磁场与电磁波标准答案(第四版)谢处方.doc(66页珍藏版)》请在咨信网上搜索。
1、第一章习题解答1.1 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。解 (1)(2)(3)11(4)由 ,得 (5)在上的分量 (6)(7)由于所以 (8) 1.2 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。解 (1)三个顶点、和的位置矢量分别为 ,则 , ,由此可见故为一直角三角形。 (2)三角形的面积 1.3 求点到点的距离矢量及的方向。解 ,则 且与、轴的夹角分别为1.4 给定两矢量和,求它们之间的夹角和在上的分量。解 与之间的夹角为 在上的分量为 1.5 给定两矢量和,求在上的分量。解 所
2、以在上的分量为 1.6 证明:如果和,则;解 由,则有,即由于,于是得到 故 1.7 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。解 由,有故得 1.8 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。解 (1)在直角坐标系中 、故该点的直角坐标为。(2)在球坐标系中 、故该点的球坐标为1.9 用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。解 (1)在直角坐标中点处,故(2)在直角坐标中点处,所以故与构成的夹角为 1.10 球坐标中两个点和定出两个
3、位置矢量和。证明和间夹角的余弦为解 由 得到 1.11 一球面的半径为,球心在原点上,计算: 的值。解 1.12 在由、和围成的圆柱形区域,对矢量验证散度定理。解 在圆柱坐标系中 所以 又 故有 1.13 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。解 (1)(2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 1.14 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。解 又在球坐标系中,所以1.15 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求
4、对此回路所包围的曲面积分,验证斯托克斯定理。解 又 所以 故有 1.16 求矢量沿圆周的线积分,再计算对此圆面积的积分。解 1.17 证明:(1);(2);(3)。其中,为一常矢量。解 (1)(2) (3)设,则,故1.18 一径向矢量场表示,如果,那么函数会有什么特点呢? 解 在圆柱坐标系中,由 可得到 为任意常数。在球坐标系中,由 可得到 1.19 给定矢量函数,试求从点到点的线积分:(1)沿抛物线;(2)沿连接该两点的直线。这个是保守场吗? 解 (1) (2)连接点到点直线方程为 即 故 由此可见积分与路径无关,故是保守场。1.20 求标量函数的梯度及在一个指定方向的方向导数,此方向由单
5、位矢量定出;求点的方向导数值。 解 题1.21图故沿方向的方向导数为 点处沿的方向导数值为1.21 试采用与推导直角坐标中相似的方法推导圆柱坐标下的公式。解 在圆柱坐标中,取小体积元如题1.21图所示。矢量场沿方向穿出该六面体的表面的通量为同理因此,矢量场穿出该六面体的表面的通量为故得到圆柱坐标下的散度表达式 1.22 方程给出一椭球族。求椭球表面上任意点的单位法向矢量。解 由于 故椭球表面上任意点的单位法向矢量为1.23 现有三个矢量、为 (1)哪些矢量可以由一个标量函数的梯度表示?哪些矢量可以由一个矢量函数的旋度表示?(2)求出这些矢量的源分布。解(1)在球坐标系中 故矢量既可以由一个标量
6、函数的梯度表示,也可以由一个矢量函数的旋度表示;在圆柱坐标系中 故矢量可以由一个标量函数的梯度表示;直角在坐标系中 故矢量可以由一个矢量函数的旋度表示。 (2)这些矢量的源分布为 ,;,;,1.24 利用直角坐标,证明解 在直角坐标中1.25 证明解 根据算子的微分运算性质,有式中表示只对矢量作微分运算,表示只对矢量作微分运算。由,可得同理 故有 1.26 利用直角坐标,证明解 在直角坐标中所以1.27 利用散度定理及斯托克斯定理可以在更普遍的意义下证明及,试证明之。解 (1)对于任意闭合曲线为边界的任意曲面,由斯托克斯定理有由于曲面是任意的,故有(2)对于任意闭合曲面为边界的体积,由散度定理
7、有其中和如题1.27图所示。由斯托克斯定理,有, 由题1.27图可知和是方向相反的同一回路,则有 所以得到 题1.27图由于体积是任意的,故有 二章习题解答 2.1 一个平行板真空二极管内的电荷体密度为,式中阴极板位于,阳极板位于,极间电压为。如果、横截面,求:(1)和区域内的总电荷量;(2)和区域内的总电荷量。 解 (1) (2) 2.2 一个体密度为的质子束,通过的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为,束外没有电荷分布,试求电流密度和电流。解 质子的质量、电量。由得 故 2.3 一个半径为的球体内均匀分布总电荷量为的电荷,球体以匀角速度绕一个直径旋转,求球内的电流密
8、度。解 以球心为坐标原点,转轴(一直径)为轴。设球内任一点的位置矢量为,且与轴的夹角为,则点的线速度为球内的电荷体密度为故 2.4 一个半径为的导体球带总电荷量为,同样以匀角速度绕一个直径旋转,求球表面的面电流密度。解 以球心为坐标原点,转轴(一直径)为轴。设球面上任一点的位置矢量为,且与轴的夹角为,则点的线速度为球面的上电荷面密度为故 2.5 两点电荷位于轴上处,位于轴上处,求处的电场强度。解 电荷在处产生的电场为电荷在处产生的电场为故处的电场为2.6 一个半圆环上均匀分布线电荷,求垂直于圆平面的轴线上处的电场强度,设半圆环的半径也为,如题2.6 图所示。解 半圆环上的电荷元在轴线上处的电场
9、强度为 题 2.6图在半圆环上对上式积分,得到轴线上处的电场强度为2.7 三根长度均为,均匀带电荷密度分别为、和地线电荷构成等边三角形。设,计算三角形中心处的电场强度。解 建立题2.7图所示的坐标系。三角形中心到各边的距离为题2.7图则故等边三角形中心处的电场强度为2.8 点电荷位于处,另点电荷位于处,空间有没有电场强度的点?解 电荷在处产生的电场为 电荷在处产生的电场为处的电场则为。令,则有由上式两端对应分量相等,可得到 当或时,将式或式代入式,得。所以,当或时无解; 当且时,由式,有解得但不合题意,故仅在处电场强度。29 一个很薄的无限大导电带电面,电荷面密度为。证明:垂直于平面的轴上处的
10、电场强度中,有一半是有平面上半径为的圆内的电荷产生的。解 半径为、电荷线密度为的带电细圆环在轴上处的电场强度为 题2.10图故整个导电带电面在轴上处的电场强度为而半径为的圆内的电荷产生在轴上处的电场强度为2.10 一个半径为的导体球带电荷量为,当球体以均匀角速度绕一个直径旋转,如题2.10图所示。求球心处的磁感应强度。解 球面上的电荷面密度为当球体以均匀角速度绕一个直径旋转时,球面上位置矢量点处的电流面密度为将球面划分为无数个宽度为的细圆环,则球面上任一个宽度为细圆环的电流为 细圆环的半径为,圆环平面到球心的距离,利用电流圆环的轴线上的磁场公式,则该细圆环电流在球心处产生的磁场为 故整个球面电
11、流在球心处产生的磁场为 2.11 两个半径为、同轴的相同线圈,各有匝,相互隔开距离为,如题2.11图所示。电流以相同的方向流过这两个线圈。(1)求这两个线圈中心点处的磁感应强度;(2)证明:在中点处等于零;(3)求出与之间的关系,使中点处也等于零。解 (1)由细圆环电流在其轴线上的磁感应强度 得到两个线圈中心点处的磁感应强度为 (2)两线圈的电流在其轴线上处的磁感应强度为 题2.11图所以 故在中点处,有 (3) 令 ,有 即 故解得 题 2.12图2.12 一条扁平的直导体带,宽为,中心线与轴重合,通过的电流为。证明在第一象限内的磁感应强度为 , 式中、和如题2.12图所示。解 将导体带划分
12、为无数个宽度为的细条带,每一细条带的电流。由安培环路定理,可得位于处的细条带的电流在点处的磁场为则 所以 2.13 如题2.13图所示,有一个电矩为的电偶极子,位于坐标原点上,另一个电矩为的电偶极子,位于矢径为的某一点上。试证明两偶极子之间相互作用力为 题 2.13图式中,是两个平面和间的夹角。并问两个偶极子在怎样的相对取向下这个力值最大?解 电偶极子在矢径为的点上产生的电场为所以与之间的相互作用能为因为,则 又因为是两个平面和间的夹角,所以有 另一方面,利用矢量恒等式可得因此 于是得到 ()故两偶极子之间的相互作用力为 ()() 由上式可见,当时,即两个偶极子共线时,相互作用力值最大。2.1
13、4 两平行无限长直线电流和,相距为,求每根导线单位长度受到的安培力。解 无限长直线电流产生的磁场为 直线电流每单位长度受到的安培力为 式中是由电流指向电流的单位矢量。同理可得,直线电流每单位长度受到的安培力为 2.15 一根通电流的无限长直导线和一个通电流的圆环在同一平面上,圆心与导线的距离为,如题2.15图所示。证明:两电流间相互作用的安培力为题2.15图 这里是圆环在直线最接近圆环的点所张的角。解 无限长直线电流产生的磁场为圆环上的电流元受到的安培力为由题2.15图可知 所以 2.16 证明在不均匀的电场中,某一电偶极子绕坐标原点所受到的力矩为。解 如题2.16图所示,设,则电偶极子绕坐标
14、原点所受到的力矩为题2.16 图当时,有故得到三章习题解答3.1 真空中半径为的一个球面,球的两极点处分别设置点电荷和,试计算球赤道平面上电通密度的通量(如题3.1图所示)。赤道平面题3.1 图解 由点电荷和共同产生的电通密度为则球赤道平面上电通密度的通量3.2 1911年卢瑟福在实验中使用的是半径为的球体原子模型,其球体内均匀分布有总电荷量为的电子云,在球心有一正电荷(是原子序数,是质子电荷量),通过实验得到球体内的电通量密度表达式为,试证明之。解 位于球心的正电荷球体内产生的电通量密度为 原子内电子云的电荷体密度为 题3. 3图电子云在原子内产生的电通量密度则为 故原子内总的电通量密度为
15、3.3 电荷均匀分布于两圆柱面间的区域中,体密度为, 两圆柱面半径分别为和,轴线相距为,如题3.3图所示。求空间各部分的电场。解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为的小圆柱面内看作同时具有体密度分别为的两种电荷分布,这样在半径为的整个圆柱体内具有体密度为的均匀电荷分布,而在半径为的整个圆柱体内则具有体密度为的均匀电荷分布,如题3.3图所示。空间任一点的电场是这两种电荷所产生的电场的叠加。在区域中,由高斯定律,可求得大、小圆柱中的正、负电荷在点产生的电场分别为 题3. 3图点处总的电场为 在且区域中,同理可求得大、小圆柱中的正、负电荷在点产生的电场分别为 点
16、处总的电场为 在的空腔区域中,大、小圆柱中的正、负电荷在点产生的电场分别为 点处总的电场为 3.4 半径为的球中充满密度的体电荷,已知电位移分布为 其中为常数,试求电荷密度。解:由,有 故在区域 在区域 3.5 一个半径为薄导体球壳内表面涂覆了一薄层绝缘膜,球内充满总电荷量为为的体电荷,球壳上又另充有电荷量。已知球内部的电场为,设球内介质为真空。计算:(1) 球内的电荷分布;(2)球壳外表面的电荷面密度。解 (1) 由高斯定律的微分形式可求得球内的电荷体密度为(2)球体内的总电量为 球内电荷不仅在球壳内表面上感应电荷,而且在球壳外表面上还要感应电荷,所以球壳外表面上的总电荷为2,故球壳外表面上
17、的电荷面密度为 3.6 两个无限长的同轴圆柱半径分别为和,圆柱表面分别带有密度为和的面电荷。(1)计算各处的电位移;(2)欲使区域内,则和应具有什么关系?解 (1)由高斯定理,当时,有 当时,有 ,则 当时,有 ,则 (2)令 ,则得到 3.7 计算在电场强度的电场中把带电量为的点电荷从点移到点时电场所做的功:(1)沿曲线;(2)沿连接该两点的直线。解 (1)(2)连接点到点直线方程为 即 故3.8 长度为的细导线带有均匀电荷,其电荷线密度为。(1)计算线电荷平分面上任意点的电位;(2)利用直接积分法计算线电荷平分面上任意点的电场,并用核对。解 (1)建立如题3.8图所示坐标系。根据电位的积分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电磁场 电磁波 标准答案 第四 处方
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。