基于分割区域的配电网异常线损数据辨识与修正.pdf
《基于分割区域的配电网异常线损数据辨识与修正.pdf》由会员分享,可在线阅读,更多相关《基于分割区域的配电网异常线损数据辨识与修正.pdf(11页珍藏版)》请在咨信网上搜索。
1、Zhejiang Electric Power第 42 卷 第 10 期2023 年10 月Vol.42,No.10Oct.25.2023基于分割区域的配电网异常线损数据辨识与修正张新鹤1,何桂雄1,梁琛2,马喜平2,何振武3,姜飞3(1.中国电力科学研究院有限公司,北京 100192;2.国网甘肃省电力公司电力科学研究院,兰州 730070;3.长沙理工大学 电气与信息工程学院,长沙 410076)摘要:针对配电网线损管理中基础数据异常和冗余量大的问题,提出基于分割区域的配电网异常线损数据辨识与修正方法。考虑终端数据存在冗余量,利用卡尔曼滤波算法对终端冗余数据进行融合,再遍历配电网各线路节点
2、配电变压器,采用局部异常因子算法检测运行数据;基于配电网拓扑关系,采用GN(Girvan-Newman)算法对异常节点进行区域分割;通过分析分割区域邻近节点量测数据和不平衡度指标,动态调整区域边界,直到分割区域满足估计的可观性条件,得到分割区域最终划分结果,并基于区域内节点量测模型、约束模型和估计模型求解异常数据。最后,以西北某省10 kV什新线、什金线为算例进行分析验证,结果表明所提方法可有效实现配电网异常线损数据的辨识及修正。关键词:线损数据;GN算法;局部异常因子;分割区域;卡尔曼滤波DOI:10.19585/j.zjdl.202310011 开放科学(资源服务)标识码(OSID):Id
3、entification and correction of abnormal line loss data in distribution networks based on segmented regionsZHANG Xinhe1,HE Guixiong1,LIANG Chen2,MA Xiping2,HE Zhenwu3,JIANG Fei3(1.China Electric Power Research Institute,Beijing 100192,China;2.Electric Power Research Institute of State Grid Gansu Elec
4、tric Power Company,Lanzhou 730070,China;3.School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410076,China)Abstract:Given the basic data anomalies and significant redundancy in line loss management within distribution networks,a technique for ident
5、ifying and correcting abnormal line loss data based on segmented regions is proposed.In view of the redundancy of terminal data,a Kalman filter algorithm is employed to fuse terminal redundant data.Then,by traversing the distribution transformers of various line nodes in the distribution network and
6、 using local outlier factor(LOF)algorithm,the operational data are detected.Based on the topological relationship of the distribution networks,the Girvan-Newman(GN)algorithm is used to segment the abnormal nodes.By analyzing the neighboring node measurement data and the imbalance index of the segmen
7、ted regions,the boundary of the regions is dynamically adjusted until the segmented regions meet the estimated observability conditions.The final division result of segmented regions is obtained,and abnormal data are solved using the measurement model,constraint model,and estimation model within the
8、 regions.Finally,an example of the 10 kV Shixin line and Shijin line in a province in Northwest China is used to validate the proposed method.The results demonstrate that the proposed method can identify and correct abnormal line loss data within distribution networks.Keywords:line loss data;GN algo
9、rithm;LOF;segmented region;Kalman filter0引言配电网在我国经济建设中发挥着重要作用1。随着社会经济的发展,用电负荷增加,线损问题越来越受重视。在线损管理系统中,基础数据冗余大,数据共享难度大,数据的一致性、完整性及有效性难以保证2-4。准确、快速地识别并修复异常线损数据,为制定合理的降损措施提供依据,是供电企业的重要任务5-6。在异常线损数据辨识方面:文献 7 考虑拓扑异常对线损率的影响,针对配电网两种接线方式基金项目:国家电网有限公司科技项目(52272221N002)第 10 期张新鹤,等:基于分割区域的配电网异常线损数据辨识与修正下的不同异常类型,
10、提出拓扑异常辨识方法,但未考虑数据冗余和数据统计异常对线损率同期统计值的影响;文献 8 针对数据噪声对台区线损数据造成的干扰,分析线损数据时域特征,提出电网台区线损数据识别方法,但忽略了线损数据异常波动对拓扑异常的影响;文献 9 提出一种利用改进k-最邻近和多分类SVM(支持向量机)的循环迭代算法,实现缺失数据的变压器故障诊断,但该方法只适用于缺失数据的修复,对于错误数据不具备辨识能力;文献 10 考虑用户动态用电行为的潜在规律性,结合时间序列分解和自相关分析,采用用电相似度判据实现对伪异常点的准确辨识,但欠缺对不同类别负荷用电特性的考量;文献 11 采用灰色关联分析筛选出最佳的电气特征指标,
11、利用自适应遗传算法改进BP神经网络对线损进行预测,具有较好的收敛性和准确性;文献 12 基于相似性比较原则,提出运行状态相似性评估方法,并通过确定型估计模型和组合概率估计模型对异常状态进行检测,但缺乏多组数据来验证其普适性和实用性;文献 13 利用用户历史用电量与线损电量的关联关系,通过归因分析法来识别台区窃电用户,但所提方法受信息完整度影响,不能用于检测零电量窃电用户。在异常线损修复方面:文献 14 提出将扩展卡尔曼滤波和限定记忆最小二乘法用于智能电表远程估计校准,并根据线损率特征对异常估计值进行滤波;文献 15 采用联络线分区解耦方式对互联系统进行分布式状态估计计算,实现了复杂电网的降维计
12、算和子区域估计解耦,分区解耦方式能够有效计算效率和修正精度;文献 16 提出基于DAE(降噪自编码器)和LSTM(长短期记忆)相结合的配电网日线损率预测模型,基于配电线路线损率短期变化趋势预测日线损率,但时序特征指标的选取对预测的精准度影响较大,系统的鲁棒性难以保证;文献 17 提出一种基于高级量测体系全量测点分区的配电网动态状态估计方法,并进行多尺度量测数据融合,实现数据快速修正,但实际线路量测状态较为复杂,缺乏基于实测数据的模型验证。基于以上研究,为实现配电网线路异常线损数据的快速修复,本文提出基于分割区域的配电网异常线损数据辨识与修正技术。首先针对节点存在冗余数据的情况,提出采取基于卡尔
13、曼滤波的数据融合技术进行数据预处理。分析线损异常原因,提出配电网线损异常数据识别方法和分割区域的划分方法。基于分割区域邻近节点量测数据和不平衡度指标,动态调整区域规模,得到“任意分割”最终划分结果,并建立节点量测模型、约束模型和估计模型求解异常数据。通过西北某省10 kV什新线和什金线的实测数据进行算例分析,验证所提基于分割区域的配电网异常线损数据辨识与修正技术的准确性。1线损数据异常节点定位配电网线损数据异常的原因主要有两种:一是电能表计量故障时,会导致系统采集电量数据缺失和异常,影响线损的计算结果;二是户变关系错误导致某台区档案记录其他台区用户的数据和台区用户档案缺失,造成台区高线损率或台
14、区负线损率。配电网中,变电站馈线出口,台区配电变压器(以下简称“配变”)和台区用户均装有电能表,当线损异常时,逐一人工排查工作量大、效率低、周期长。因此,如何有效提高配电网线损管理中异常数据检测效率成为电网公司的重要研究内容18-23。1.1功率-电量预处理台区配变的功率数据为96节点数据,为便于计算分析,需要对96节点功率数据进行预处理,得到日电量数据。以15 min为采样间隔采集台区配变的馈线出线功率数据,每条线路的节点电量E为:E=1560t=1NPt(1)式中:Pt为时刻t 采集的功率数值;N为采样点数,N=96。1.2长期高负损台区配变剔除策略为实现分割区域异常数据修复,首先需要对配
15、电网线路异常配变进行辨识,但长期高负损配变台区由于其高负损特性会导致算法的误判和漏判,因此需剔除长期高负损配变台区配变,再进行异常数据辨识及分割区域分割模型研究。对于配电网线路台区配变取其同期线损时间序列数据,并对比分析线损数据与人工制定标准区间,计算线损数据中异常线损的占比,设定阈91第 42 卷值分析,确定台区是否长期处于高负损24。的计算公式为:=N2N1(2)式中:N2为时间序列中超出标准的线损数据个数;N1为采集的同期线损时间序列数据总个数。若5%,则判定为长期高负损台区,并剔除该台区配变24。1.3异常节点数据检测数据挖掘作为近几年热度较高的一种数据处理方法,能够高效处理基数大且状
16、态复杂的数据25。为了快速检测配电网中线损异常台区配变,引入数据挖掘构建数学模型,检测识别异常节点数据。采用LOF(局部异常因子)算法分析配电网10 kV线路节点电压、有功功率、无功功率等数据,初步定位含有异常线损数据的节点。分别设定节点r的电压、有功功率、无功功率数据的时间序列数据集Ur(e)、Pr(e)、Qr(e),Ur(e)、Pr(e)、Qr(e)分别表示第r节点第e日的电压数据、有功功率、无功功率。通过LOF算法给每个数据分配一个依赖于相邻区域密度的离群因子的离群程度值,计算每个数据周围数据点的平均密度与该数据密度的比值,通过LOF值来判断数据点是否为异常数据18,24。以有功功率数据
17、集Pr(e)为例,第e日有功功率数据的局部可达密度k(e)和LOF值Fk(e)计算公式为:k(e)=1fNk(e)dk(e,f)(3)Fk(e)=fNk(e)k(e)k(f)k(4)dk(e,f)=x=12vx()e-vx()f2(5)式中:Nk(e)为数据e的第k距离邻域;dk(e,f)为第e日有功功率数据与第f日功率数据的欧式距离;v1(e)和v1(f)分别为第e日和第f日功率数据的编号;v2(e)和v2(f)分别为第e日和第f日的功率数据。第e日功率数据的k(e)越低,其LOF值越大。当第e日功率数据是离群数据时,则其k(e)小而其邻域数据k(e)较大;若e为簇中数据,则数据e与邻域数据
18、的k(e)相差小,其LOF值接近1。因此,采用 LOF 算法可以消除簇间密度差异带来的影响,通过判断Fk(e)大小来确定数据是否离群。2分割区域的分割原则为实现电网运行的在线监测及运维管理,电网公司通常会将现有电网分为若干子区域,实行分区治理,提高计算速度26。线损管理可细分为“四分”管理线损率,即分压线损率、分区线损率、分元件线损率和分台区线损率,中压配电网的线损管理采取分线、分台区管理。传统基于“四分”管理的中压配电网线路异常数据通过线路前推回代法和潮流计算得到,但台区和终端采集数据量庞大,导致计算量较大且精度难以控制。为加强中压配电网线路异常数据修复效率和精度,提出基于分割区域的估计模型
19、修复异常数据的方法。2.1基于GN算法的节点分割GN(Girvan-Newman)算法是一种经典的社区发现算法,最初由Michelle Girvant和Mark Newman提出。为实现分割区域内异常数据修复,需要先对异常节点分割区域,但由于每台配变之间存在连接关系,不能直接通过是否相邻来确定区域划分的结果。为此,采用GN算法实现各异常节点初步分区,划分为区域内耦合程度高、区域间耦合程度弱的区域。GN算法首先需对台区异常配变之间的连线进行删除,该过程应保证先删除区域之间的连线,后删除区域内的连线27。其次,将所有目标配变节点初始化为各个独立区域,再判断各区域是否可合并成新区域,并将模块度M作为
20、分割区域合并过程的指标,若模块度M增加则可行。最后多次迭代合并区域步骤,直到模块度M达到最大,停止区域合并,得到区域划分结果。模块度M的计算公式为:M=12mCSi,jC()kij-kikj2m=12mi,j()kij-kikj2m(ci,cj)(6)ki=jkijm=12iki=12ijkij(u,v)=1,u=v0,uv(7)92 第 10 期张新鹤,等:基于分割区域的配电网异常线损数据辨识与修正式中:C为配电网络分割区域;Si,j为分割区域内异常节点集合;ci和cj分别为异常节点i和j所属的区域;(ci,cj)为0-1变量,若节点i和j属于同个区域,则(ci,cj)取1,否则为0;ki为
21、节点i的度,即与节点i相连的所有边的权重之和;kij为连接节点i和j的边权重;m为网络中所有边的权重之和。网络模块度M可以看作各区域的模块度之和,M的取值范围为(1,1),其值越大,说明区域内连结越紧密。模块度M是评价区域划分的指标,模块度越大,区域划分的效果越好。在计算模块度时,需要节点间的连接权重数据kij,节点i和j相距越远,边权重越小。kij的计算公式为:kij=1,LijL10.5,L1LijL20,L2Lij(8)式中:Lij为节点i和j之间的距离;L1和L2为设定的线路距离阈值。2.2分割区域动态调整由于节点数据异常与相邻节点数据存在关联关系,可结合线路拓扑关系调整区域规模,实现
22、区域内正常节点数据对异常节点数据的修正。2.2.1分割区域动态调整策略利用线路拓扑关系和基尔霍夫定律对异常数据进行判断是比较可靠、精准度较高的方法。但直接结合电网拓扑关系和基尔霍夫定律的异常数据识别方法工作量巨大,只适用于样本数据较少的情况,对于数据量较大的线损管理系统的异常数据辨识难度大、周期长28。为了能够结合线路拓扑关系实现对异常数据的辨识及修正,采用LOF算法初步识别筛选出异常节点并基于GN算法分割区域,分析各分割区域的拓扑信息,收集区域邻近节点、线路的运行数据,判断是否满足异常节点数据修正条件,动态调整区域规模。分割区域调整如图1所示,存在包括异常节点5和3的分割区域,结合线路拓扑可
23、判断节点1、6、2、7的数据可修正节点5和3的异常数据。若节点6量测数据满足节点5异常数据的修正条件,则扩大区域至节点6;若节点6量测数据缺失,不满足对节点5数据的修正条件,继续扩大区域至节点6的子节点1,通过节点1与节点6、节点6与节点5的关联模型来修正节点5的异常数据。同理,对异常节点3可采取相同策略进行区域调整,直至满足区域停止调整条件。在区域动态调整过程中存在某节点同时划分到两区域的情况,为满足区域内部耦合较强、区域间耦合较弱的条件,将含有相同节点的区域融合。2.2.2分割区域停止调整条件通过GN算法实现了对异常节点的分割,为满足分割区域内异常数据的自动修正,需要动态调整分割区域,将区
24、域扩大至邻近正常节点,通过邻近正常节点数据和节点间关联度模型校正异常节点数据。若区域内满足实现异常数据修正计算的可观性,则停止分割区域动态调整;反之,则充分考虑相邻近节点数据的信息,扩大分割区域范围,直至分割区域内异常数据可实现全部校验计算。为判断区域分割结果是否满足区域异常数据修正计算可观性条件,设立复杂配电线路的配变异常节点分区模型中区域量测冗余不平衡度指标G29:minG=max()1,2,bmin()1,2,ba=masa,a=1,2,b(9)式中:b为区域个数;a为第a个分割区域的量测冗余度;ma为第a个分割区域的量测量个数;sa为第a个分割区域的状态量个数。通过量测冗余不平衡度指标
25、能有效判断区域估计的可观性和数据估计精度。该指标数据越小,表示分割区域量测冗余度不平衡度越低,各分割区域的估计数据与真值的偏差值越相近,分区越合理30。图1 分割区域调整Fig.1 The segmented region adjustment93第 42 卷3分割区域异常数据辨识及修正模型3.1基于卡尔曼滤波的冗余数据融合通过SCADA(数据采集与监视控制)系统和AMI(高级量测体系)采集的量测数据存在缺失、异常和冗余,为实现异常数据自动辨识,需要对缺失和冗余的数据进行预处理。缺失数据可采用数据填补的算法进行修正。要将实际的量测数据从含有噪声、谐波的冗余电力信号中分离出来较为困难,因此采用基
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 分割 区域 配电网 异常 数据 辨识 修正
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。