基于极限学习机的智能电网运行入侵检测研究.pdf
《基于极限学习机的智能电网运行入侵检测研究.pdf》由会员分享,可在线阅读,更多相关《基于极限学习机的智能电网运行入侵检测研究.pdf(4页珍藏版)》请在咨信网上搜索。
1、智能设计检测 年 月第 卷第 期 :,收稿日期:;修回日期:作者简介:梁林森(),男,硕士,高级工程师,研究方向:信息技术等;:。引文格式:梁林森 基于极限学习机的智能电网运行入侵检测研究 粘接,():基于极限学习机的智能电网运行入侵检测研究梁林森(广东电网有限责任公司 广州供电局信息中心,广东 广州 )摘要:为解决智能电网运行入侵检测效率慢及入侵检测精度较低等问题,提出基于量子甲虫群算法优化的极限学习机模型。通过构建量子甲虫群优化算法,并引入量子力学,结合甲虫触角搜索和粒子群优化的优点,以进一步提高极限学习机算法入侵收敛性能,降低极限学习机的计算复杂度和训练时间。结果表明:随着迭代次数的增加
2、,入侵检测测试误差逐渐减小,最小误差率为 。所提出的极限学习机算法的准确率、平均 值和攻击准确率分别为 、和 。与随机森林算法相比,极限学习机可以有效提高智能电网运行入侵检测的准确性、检测率、攻击准确率,降低误报率,算法可满足实际智能电网运行入侵检测。关键词:极限学习机;智能电网;入侵;检测研究中图分类号:文献标志码:文章编号:()(,):,:;如果智能电网受到攻击,人们的生活将受到严重影响 。智能电网给社会带来了便利,也带来了新的挑战 。基于此,我国相继在智能电网安全方面开展了一些研究,探索了智能电网入侵检测领域。基于异常的入侵检测系统用于检测系统的异常行为,当检测行为与正常行为有很大偏差时
3、会发出警告消息 。目前基于异常的入侵检测研究主要集中在基于统计的入侵检测、基于传统机器学习的智能设计检测入侵检测、基于可视化的入侵检测系统、基于神经网络的入侵检测等方面 。其中,极限学习机作为一类具有自适应特性的大型非线性动力系统,在入侵检测识别中具有很好的应用前景。因此可以利用极限学习机算法的自学习能力,来解决网络入侵检测中的某些问题。极限学习机具有多数据并行计算、自适应学习能力好、可搜索速度快、抗干扰性能强、处理失真、不完整数据信息的能力等优点 ,非常适合从大型网络中复杂、大量数据中识别入侵数据。然而,传统的极限学习机算法收敛速度慢,容易陷入局部极小值的限制,限制了极限学习机的应用 。对此
4、,部分研究人员提出了相应的改进策略。基于 神经网络,采用主成分分析方法对 神经网络进行了参数选取和权值选取 。将人工蜂群和 神经网络相结合,优化了网络模型的收敛速度和准确性 。提出了基于粗糙集理论的域概念,并利用域粗糙集理论来简化实验数据和 网络结构 。此外,量子计算越来越受到关注,量子计算与人工智能算法的结合也广泛应用于各个领域。例如,提出将量子粒子群优化算法应用于城市电动汽车充电站的规划,并证明了其有效性和可行性 。引入一种基于量子粒子群优化算法的混沌搜索来提高初始种群的质量,并将其应用于水电站的优化调度,有效地提高了梯级水能的利用率 。提出了一种基于量子遗传算法的网络优化覆盖算法,以便在
5、给定传感器节点数时获得最大的网络覆盖率 。研究提出了一种基于量子甲虫群优化的极限学习机入侵检测模型。与其他模型相比,该模型具有更快的收敛速度和更高的精度 。将量子力学的基本原则引入到量子甲虫群方法中,并将其与微粒群方法进行了融合。使算法更容易跳出局部最优解。将此模型应用于改进的极限学习机可以提高检测入侵网络的效率。智能电网运行入侵检测算法建立甲虫群算法可以模拟甲虫的飞行过程 。甲虫群算法采用迭代法逐步逼近最优解。由于甲虫群算法中只有个体,与其他智能算法相比,具有算法简单、计算速度快的优点。且甲虫群算法侧重于过程搜索,这有利于解决单峰问题。但是,也有可能出现搜索精度低的问题。而粒子群优化()是一
6、种群体进化优化算法,有利于多峰问题的优化 。但是,也存在过早收敛、收敛精度低、收敛困难等缺陷。因此,本文提出了一种与量子计算相结合的量子甲虫群模型。根据甲虫群算法和粒子群优化算法各自的优势,单个甲虫可以从自己的经验以及群体经验中学习 。因此,单个甲虫可以有目的、有启发性的移动,从而提高算法的收敛性能。最后,在迭代后期引入精英策略来增加种群的多样性,以避免算法陷入局部最优。甲虫群算法甲虫群算法的基本原理如下。甲虫在进食时不知道食物的具体位置,所以它用 根天线来探测食物的气味并确定其方向。如果甲虫的左边天线收到的气味比右边天线强,甲虫就会向左边飞去,否则就向右边移动。基于这个简单的原则,它可以很容
7、易地找到食物 。详细步骤如下。假设甲虫的头在任何方向上都是随机移动的,那么从右边的天线到左边的天线的矢量方向也一定是随机的。因此,对于 维空间的优化问题,可以生成一个随机矢量来表示和规范。(,)(,)()其中 是空间维度,(,)为一个随机函数。左边和右边的天线之间的关系可以表示为:()其中 和 可以用中心点来表示:()()()其中 是搜索区域的左侧,是右侧。进一步确定左侧和右侧天线的气味强度,其中()和 ()代替左右位置,()为适配函数。为了制定搜索行为步骤,进一步生成了以下迭代模型。迭代更新甲虫的位置以探测气味。()()()()()其中 是甲虫第 次迭代中的中心点坐标。第 次迭代的步长为,(
8、)为符号函数。粒子群优化算法粒子群优化算法的灵感来自于生物种群的行为特征,并被有效地用于解决复杂的优化问题。在粒子群优化系统中,通过连续迭代寻求最优解或近似最优解,通常用于解决各种优化问题。在粒子群优化模型中,每一个粒子都是最优解,而每一个粒子的运动强度都是以目标函数为基础。首先对每一个微粒进行初始化,微粒都具有对应的初始点。其次,该粒子会按照目前最好的粒子进行更新。所有的微粒都是在其各自找到的最优位置()以及在全部微粒群体中找到的最优位置()来实现对自身状态的调节。一维向量可用于表示所有粒子的位置和速度,即:,()在每次迭代中,粒子速度和位置更新公式:()()()()智能设计检测 ()()式
9、中:是当前的迭代次数;、为学习因子(一般值取为 );,是介于(,)之间的独立随机数。和 是惯性权重;最大值和最小值通常分别为 和 ;是最大迭代次数。量子甲虫群算法优化极限学习机甲虫群算法中的聚类可以用力学中的粒子束缚态来描述 。在量子力学中,量子粒子反映与束缚态相同的行为,处于量子束缚状态的粒子可以以一定的概率密度出现在空间中的任何一点。当粒子靠近中心“”时,发生的概率更大,当与 的距离接近无穷大时,概率密度接近零。其他势能模型具有过于复杂而无法模拟的波函数,有些容易过早成熟,因此选择势阱模型 。在量子空间中无固定轨道的质点,它的速度与位置都无法同时被确定。所以粒子的状态由波函数(,)描述,其
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 极限 学习机 智能 电网 运行 入侵 检测 研究
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。