高二数学《简单线性规划》教案.doc
《高二数学《简单线性规划》教案.doc》由会员分享,可在线阅读,更多相关《高二数学《简单线性规划》教案.doc(18页珍藏版)》请在咨信网上搜索。
1、7.4 简单的线性规划教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;(2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念;(3)了解线性规化问题的图解法,并能应用它解决一些简单的实际问题;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;(5)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新矚慫润厲钐瘗睞枥庑赖。教学建议 一、知识结构教科书首先通过一个具体问题,介绍了二元一次不等式表示平面区域再通过一个具体实
2、例,介绍了线性规化问题及有关的几个基本概念及一种基本解法图解法,并利用几道例题说明线性规化在实际中的应用二、重点、难点分析本小节的重点是二元一次不等式(组)表示平面的区域对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生、抽象的概念,按高二学生现有的知识和认知水平难以透彻理解,因此学习二元一次不等式(组)表示平面的区域分为两个大的层次:(1)二元一次不等式表示平面区域首先通过建立新旧知识的联系,自然地给出概念明确二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域不包含边界直线(画成虚线)其次再扩大到所表示的平面区域是包含边界直线且要把边界直线画成实线(2)二元一次不等
3、式组表示平面区域在理解二元一次不等式表示平面区域含义的基础上,画不等式组所表示的平面区域,找出各个不等式所表示的平面区域的公共部分这是学生对代数问题等价转化为几何问题以及数学建模方法解决实际问题的基础难点是把实际问题转化为线性规划问题,并给出解答对许多学生来说,从抽象到的化归并不比从具体到抽象遇到的问题少,学生解数学应用题的最常见困难是不会将实际问题提炼成数学问题,即不会建模所以把实际问题转化为线性规划问题作为本节的难点,并紧紧围绕如何引导学生根据实际问题中的已知条件,找出约束条件和目标函数,然后利用图解法求出最优解作为突破这个难点的关键对学生而言解决应用问题的障碍主要有三类:不能正确理解题意
4、,弄清各元素之间的关系;不能分清问题的主次关系,因而抓不住问题的本质,无法建立数学模型;孤立地考虑单个的问题情景,不能多方联想,形成正迁移针对这些障碍以及题目本身文字过长等因素,将本课设计为计算机辅助教学,从而将实际问题鲜活直观地展现在学生面前,以利于理解;分析完题后,能够抓住问题的本质特征,从而将实际问题抽象概括为线性规划问题另外,利用计算机可以较快地帮助学生掌握寻找整点最优解的方法三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议
5、将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的(4)建议通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的(5)对作业、思考题、研究性题的建议:作业主要训练学生规范的解题步骤和作图能力;思考题主要供学有余力的学生课后完成;研究性题综合性较大,主要用于拓宽学
6、生的思维(6)若实际问题要求的最优解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找如果可行域中的整点数目很少,采用逐个试验法也可(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小聞創沟燴鐺險爱氇谴净。线性规划教学设计方案(一)教学目标使学生了解并会作二元一次不等式和不等式组表示的区域重点难点
7、了解二元一次不等式表示平面区域教学过程【引入新课】我们知道一元一次不等式和一元二次不等式的解集都表示直线上的点集,那么在平面坐标系中,二元一次不等式的解集的意义是什么呢?残骛楼諍锩瀨濟溆塹籟。【二元一次不等式表示的平面区域】1先分析一个具体的例子我们知道,在平面直角坐标系中,以二元一次方程 的解为坐标的点的集合 是经过点(0,1)和(1,0)的一条直线l(如图)那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式) 的解为坐标的点的集合 是什么图形呢?酽锕极額閉镇桧猪訣锥。在平面直角坐标系中,所有点被直线l分三类:在l上;在l的右上方的平面区域;在l的左下方的平面区域(如
8、图)取集合A的点(1,1)、(1,2)、(2,2)等,我们发现这些点都在l的右上方的平面区域,而点(0,0)、(1,1)等等不属于A,它们满足不等式 ,这些点却在l的左下方的平面区域彈贸摄尔霁毙攬砖卤庑。由此我们猜想,对直线l右上方的任意点 成立;对直线l左下方的任意点 成立,下面我们证明这个事实在直线 上任取一点 ,过点P作垂直于y轴的直线 ,在此直线上点P右侧的任意一点 ,都有 于是 所以 因为点 ,是L上的任意点,所以,对于直线 右上方的任意点 ,都成立同理,对于直线 左下方的任意点 ,都成立所以,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集点是直线 右上方的平面区域(如图)
9、类似地,在平面直角坐标系中,以二元一次不等式 的解为坐标的点的集合 是直线 左下方的平面区域2二元一次不等式 和 表示平面域(1)结论:二元一次不等式 在平面直角坐标系中表示直线 某一侧所有点组成的平面区域把直线画成虚线以表示区域不包括边界直线,若画不等式 就表示的面区域时,此区域包括边界直线,则把边界直线画成实线謀荞抟箧飆鐸怼类蒋薔。(2)判断方法:由于对在直线 同一侧的所有点 ,把它的坐标 代入 ,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点 ,以 的正负情况便可判断 表示这一直线哪一侧的平面区域,特殊地,当 时,常把原点作为此特殊点厦礴恳蹒骈時盡继價骚。【应用举例】例1
10、画出不等式 表示的平面区域解;先画直线 (画线虚线)取原点(0,0),代入 , 原点在不等式 表示的平面区域内,不等式 表示的平面区域如图阴影部分例2 画出不等式组 表示的平面区域分析:在不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分茕桢广鳓鯡选块网羈泪。解:不等式 表示直线 上及右上方的平面区域, 表示直线 上及右上方的平面区域, 上及左上方的平面区域,所以原不等式表示的平面区域如图中的阴影部分鹅娅尽損鹌惨歷茏鴛賴。课堂练习作出下列二元一次不等式或不等式组表示的平面区域(1) (2) (3) (4) (5) 总结提炼1二元一次不等式表示的
11、平面区域2二元一次不等式表示哪个平面区域的判断方法3二元一次不等式组表示的平面区域布置作业1不等式 表示的区域在 的( )A右上方 B右下方 C左上方 D左下方2不等式 表示的平面区域是( )3不等式组 表示的平面区域是( )4直线 右上方的平面区域可用不等式 表示5不等式组 表示的平面区域内的整点坐标是 6画出 表示的区域答案:1B 2D 3B 4 5(1,1)6线性规划教学设计方案(二)教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值重点难点理解二元一次不等式表示平面区域是教学重点如何扰实际问题转化为线性规划问题,并给出解答是教学难点教学步骤【新课引入
12、】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用籟丛妈羥为贍偾蛏练淨。【线性规划】先讨论下面的问题设 ,式中变量x、y满足下列条件 求z的最大值和最小值我们先画出不等式组表示的平面区域,如图中 内部且包括边界点(0,0)不在这个三角形区域内,当 时, ,点(0,0)在直线 上預頌圣鉉儐歲龈讶骅籴。作一组和 平等的直线 可知,当l在 的右上方时,直线l上的点 满足 即 ,而且l往右平移时,t随之增大,在经过不等式组表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t最大,以经过点
13、的直线 ,所对应的t最小,所以渗釤呛俨匀谔鱉调硯錦。在上述问题中,不等式组是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件铙誅卧泻噦圣骋贶頂廡。 是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于 又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数 在线性约束条件下的最大值和最小值问题擁締凤袜备訊顎轮烂蔷。线性约束条件除了用一次不等式表示外,有时也有一次方程表示一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题,满足线性约束条件的解 叫做可行解,由所有可行解组成的集合叫做可行域,在上述问
14、题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解贓熱俣阃歲匱阊邺镓騷。【应用举例】例1 解下列线性规划问题:求 的最大值和最小值,使式中的x、y满足约束条件 解:先作出可行域,见图中 表示的区域,且求得 作出直线 ,再将直线 平移,当 的平行线 过B点时,可使 达到最小值,当 的平行线 过C点时,可使 达到最大值坛摶乡囂忏蒌鍥铃氈淚。 通过这个例子讲清楚线性规划的步骤,即:第一步:在平面直角坐标系中作出可行域;第二步:在可行域内找出最优解所对应的点;第三步:解方程的最优解,从而求出目标函数的最大值或最小值例2
15、 解线性规划问题:求 的最大值,使式中的x、y满足约束条件 解:作出可行域,见图,五边形OABCD表示的平面区域作出直线 将它平移至点B,显然,点B的坐标是可行域中的最优解,它使 达到最大值,解方程组 得点B的坐标为(9,2)蜡變黲癟報伥铉锚鈰赘。 这个例题可在教师的指导下,由学生解出在此例中,若目标函数设为 ,约束条件不变,则z的最大值在点C(3,6)处取得事实上,可行域内最优解对应的点在何处,与目标函数 所确定的直线 的斜率 有关就这个例子而言,当 的斜率为负数时,即 时,若 (直线 的斜率)时,线段BC上所有点都是使z取得最大值(如本例);当 时,点C处使z取得最大值(比如: 时),若
16、,可请同学思考買鲷鴯譖昙膚遙闫撷凄。随堂练习1求 的最小值,使式中的 满足约束条件 2求 的最大值,使式中 满足约束条件 答案:1 时, 2 时, 总结提炼1线性规划的概念2线性规划的问题解法布置作业1求 的最大值,使式中的 满足条件 2求 的最小值,使 满足下列条件 答案:1 2在可行域内整点中,点(5,2)使z最小, 扩展资料线性规划的解课本题中出现的线性规划都有唯一的最优解,其实线性规划的解有许多不同的情况,除了有唯一的最优解的情况外,还有綾镝鯛駕櫬鹕踪韦辚糴。(1)无可行解,从而无最优解这就是约束条件不等式组无解的情况(2)有无穷多个最优解例2 我们用图解法求解由于目标函数等高线和可行
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简单线性规划 数学 简单 线性规划 教案
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【快乐****生活】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【快乐****生活】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。