计算机行业五大关键要素:解锁生成式AI全新机遇.pdf
《计算机行业五大关键要素:解锁生成式AI全新机遇.pdf》由会员分享,可在线阅读,更多相关《计算机行业五大关键要素:解锁生成式AI全新机遇.pdf(58页珍藏版)》请在咨信网上搜索。
1、五大关键要素解锁生成式AI全新机遇从基础模型到落地的生成式 AI 应用,需要经过模型训练、模型定制、模型部署、模型推理等环节。各个环节上的行业参与者均面临着不同程度的基础设施、数据集成、应用场景选择、安全与隐私以及负责任 AI 方面的挑战:大模型提供商在训练基础模型的过程中,数据准备工作复杂而耗时,训练基础设施的管理与优化有较高的门槛,且算力成本高昂。对于生成式 AI 应用开发者而言,需要为应用场景选择最为适配的模型,也需要集成来自不同存储库、不同格式的数据,还需要保障用户数据隐私、模型安全以及生成内容的安全。对于生成式 AI 应用使用方而言,识别应用场景、利用自有数据与大模型进行交互的过程中
2、如何保证数据安全,如何确保模型生成内容所问即所答,都是其挑战所在。整体来看,能够帮助生成式AI新生态里的产业参与者加速生成式 AI 应用落地的解决方案,必须具备五大要素:高性价比的基础设施、丰富而灵活的模型选择、使用私有数据实现差异化定制、开箱即用的生成式 AI 驱动的应用和负责任的 AI。关于部署方式,现阶段用户更倾向于从云端开始部署:一方面大模型尚处于早期,模型能力不断突破,云服务能够助力用户快速使用到最新的模型能力;另一方面,使用云服务也可以助力用户降低基础设施搭建与运维的时间成本,因此云服务商成为各类玩家构建和部署生成式 AI 应用的首选合作伙伴。执行概要开启云上生成式 AI 之旅:有
3、必要尽快将生成式 AI 融入企业级战略,确定是自建模型还是使用模型定制功能来发挥企业的差异化优势。在参考外部诸如提高生产力、增强用户体验以及优化业务流程成功实践的同时,筛选确定自身应用场景。端到端构建生成式AI 应用,则从为应用场景选择模型开始,参考当前的成功实践,选择适当的模型定制路线进行模型的适配与调整,将经过评估验证的模型集成到企业应用系统,并设立评估指标,对应用进行持续迭代。亚马逊云科技助力释放生成式 AI 潜力:亚马逊云科技致力于不断降低机器学习使用门槛,面向生成式 AI,公司提供丰富的算力选择与高效的加速训练与推理;在海外区域推出 Amazon Bedrock 助力轻松构建并规模化
4、生成式 AI 应用,以及企业级生成式 AI 助手 Amazon Q;高度重视为用户提供负责任的 AI 策略支持。此外,公司也在持续建设端到端的数据基座,以支持生成式 AI 的数据集成需求。至今,超过万家客户利用亚马逊云科技 Amazon Bedrock 进行生成式 AI 创新。生成式 AI 应用:热度高、落地慢.近六成企业开始拥抱生成式 AI.生成式 AI 落地不及预期构建生成式 AI 应用的现实挑战.生成式 AI 三类主要参与者.数据准备耗时,训练成本高昂.数据集成复杂,模型适配难,安全要求高.应用场景筛选难,数据隐私安全顾虑,缺乏成功部署实践云服务助力构建生成式 AI 应用.落地生成式 A
5、I 应用的五大关键要素.具备成本效益和领先 AI 应用的云服务加速构建生成式 AI010203CONTENTS从云端开始构建生成式 AI.制定融入生成式 AI 的人工智能战略.规划生成式 AI 应用场景.端到端构建生成式 AI 应用亚马逊云科技助力企业解锁生成式 AI 潜力.高性价比且丰富的基础设施加速训练与推理.丰富的模型可选,可基于私有数据差异化定制.生成式 AI 驱动的应用程序.亚马逊云科技注重负责任的 AI.端到端数据基座打通壁垒,让所有应用可治理、可管控0504随着生成式 AI 应用快速进入市场,以及越来越多大模型的不断面世,年已经成为生成式 AI 的元年:不同区域、各行各业、不同领
6、域的人们开始尝试在工作和生活中使用生成式 AI,以探索各种可能性。于企业而言,生成式 AI 也已经成为从董事会到基层员工都在探讨热议的话题,一些领先的企业甚至已经利用生成式 AI 技术实现了业绩增长。生成式 AI 应用:热度高、落地慢第一章在年第四季度的生成式 AI 用户调研中,IDC 发现,已经有近六成的企业开始拥抱生成式 AI,超过三成企业开始制定潜在应用场景,仅有%的企业还没有任何举措。%的企业表示已经投资生成式 AI,并且有相应的预算计划。这些预算可能来自年已有的规划,也有些是针对生成式 AI 新增的预算。%的企业表示已经做了一些初步的测试与概念验证,但还没有明确的投资计划。%的企业表
7、示正在制定潜在应用场景,但还没有进入试点阶段。仅有%的企业表示目前还没有任何举措。.近六成企业开始拥抱生成式 AI图 贵组织目前评估或者使用生成式AI的进度如何?来源:IDC,N=我们对生成式AI进行初步测试,但没有固定的支出计划我们正在制定一份潜在用例列表,但尚未开始试点我们已经投资了生成式 AI 且有明确预算我们还没有做任何举措.%.%.%.%.%.%.%.%.%.%.%.%.%.生成式 AI 落地不及预期在已经开始尝试生成式 AI 的企业中,应用场景遍及企业各个业务流程,包括客户服务类应用、支持运营决策类应用、提高员工生产力的应用、辅助产品设计的应用、支持营销的应用等。其中,高管最为关注
8、且最希望从中获取价值的前三大应用为:智能客服类应用、支持财务和运营决策的应用以及专注于提升员工生产力的应用。在实际探索中,预计能优先落地的场景主要是生成式 AI 支持数字化营销领域的应用,支持财务、运营决策类的应用,以及智能客服类应用。综合来看,模型生成结果的准确性、人才技能稀缺、部署的成本等,都影响了生成式 AI 的规模化落地。深入探索企业生成式 AI 的实践,发掘落地前、中、后的全链路问题,让企业能够理性选择技术方案、大胆尝试应用场景,才能真正实现以生成式 AI 带来差异化竞争优势。在落地时间方面,五成以上的企业认为各个领域的应用落地时间都需要在个月以上,这远远长于企业期望的个月的时间。在
9、应用范围方面,即使已经上线的应用,范围也都比较局限,以单点应用为主,如基于大模型升级的智能客服;当前,单个项目的应用可能也就局限于小部分客户群体或者不足百路的坐席中。科技行业正处于开创性时刻,生成式 AI 使预测变得更加容易,甚至可能更加普惠、价格更加亲民。企业将把生成式 AI 应用到更多全新的领域,带来众多商业模式和竞争战略的改变。IDC 预计,生成式 AI 将在未来年内为全球 GDP 增加近万亿美元。然而,高关注度、高预期并没有带来相应的落地进展。厘清生成式 AI 应用落地的路径,寻找能够加速应用落地的解决方案,是行业参与者的当务之急。图 企业高管最关注的生成式 AI 应用以及预计落地时间
10、来源:IDC全球生成式AI调研,N=专注在以客户为中心的应用专注于财务/运营决策支持应用专注于员工应用(技能/培训)专注于数字营销工具专注于应用开发工具专注于 PLM 以及产品设计应用专注于 RFP/合同流程应用%集成生成式 AI 的热门领域热门领域生成式 AI 应用预计落地时间专注在面向客户的应用已经开始整合小于个月平均时间(月)到个月到个月个月以上专注于财务/运营应用专注在数字营销应用.%.%.%相比上一代 AI,生成式 AI 应用的开发需要重新在各种大模型之间进行选型适配,对于用于模型训练的数据的安全性要求更高,在模型定制环节的工作有更加多样性的选择,也因此形成了全新的生成式 AI 应用
11、产业生态。而生态上的所有参与者,今天也面临着诸如数据、算力、成本、模型适配、安全隐私等挑战。构建生成式 AI 应用的现实挑战第二章.生成式AI三类主要参与者从基础模型到集成到企业系统中的生成式 AI 应用,简单说就是对基础模型进行定制、调整,再进行推理的过程。其中,基础模型的训练,对于数据、算力以及技能、人才的要求都很高,因此只有少部分企业专注于模型的训练,即模型提供商。更多的企业选择依托基础模型,使用自有数据进行调优、采用提示词工程(Prompt Engineering)的方法,以提升模型生成内容的准确性;或者使用检索增强生成(下文简称:RAG)的方法以充分利用企业自有知识使模型更好地理解上
12、下文的语境,给出更相关的答案这两类群体为生成式AI应用开发者。行业应用解决方案商则是将生成式AI应用集成到现有的系统中,开发出 AI 赋能的行业应用;大部分行业用户也更倾向于采用融入生成式 AI 能力的行业应用,来实现智能化升级。图 大模型驱动的生成式AI价值链生成式AI应用使用方生成式AI应用开发者基础模型提供商基于大模型的生成式AI应用对基础模型使用自有或行业数据集进行微调从到构建基础模型提示词工程(Prompt Engineering)检索增强生成(RAG)通用生成式AI应用生成式AI驱动的数字人智能客服AI辅助代码设计知识管理.制造行业生成式AI应用产品设计供应链管理质量控制自动化预测
13、性维护.互联网行业生成式AI应用生成式AI辅助NPC设计智能推荐自适应教育AI辅助艺术设计.生命科学/医疗生成式AI应用新药研发临床决策助手AI辅助诊断.出海场景生成式AI应用机器翻译智能推荐AI生成内容对话式AI.更多生成式AI应用.来源:IDC,大模型提供商基础模型训练大模型提供商从零开始构建基础模型,参数量达到百万、千万甚至亿级别,典型厂商如 Anthropic、Al Labs、Meta、cohere、OpenAI、Stability.ai、智谱华章、百川智能等。当前阶段,通常只有科技巨头、头部创企才有能力自主进行大模型训练,这些大模型也是生成式AI应用创新的重要源头。从模型的供给侧来看
14、,随着大模型提供商的逐渐发展和壮大,参数量的不断增加,这些模型应用到生产环境中的准确性也相应的越来越高,过去不可能达到的预测准确度也开始成为可能。生成式 AI 应用开发者从基础模型得到最终应用,需要将特定领域数据引入基础模型进行再次训练/调优,才能获得理想的效果。如前所述,当下有三种方式可以实现模型的定制:调优,提示词工程,检索增强生成(RAG)。生成式AI应用开发者可以基于市场上的商业化或者开源模型,采用专有数据对模型进行调整,来构建特定场景下的生成式 AI 应用。各行业的解决方案商可以采用基础模型基于领域数据训练领域大模型,行业企业则可以使用模型定制功能开发企业专属应用,市场上也涌现出越来
15、越多的AI原生企业采用大模型开发出各种创新的应用。图 生成式AI应用开发者来源:IDC,生成式 AI 应用开发者提示词工程(Prompt Engineering)检索知识增强(RAG)微调(Fine-tuning)通过设计和调整输入的提示词(Prompt),来引导这些模型生成更准确、更有针对性的输出文本在模型运行时动态地从外部知识库中检索信息,并将其与模型当前处理的内容结合起来,以增强模型的知识理解和回答能力对预训练的大模型在特定的数据集上进一步训练,优化其在特定任务上的性能生成式 AI 应用使用方将大模型驱动的生成式 AI 应用程序,部署到企业现有的系统中。采用构建好的生成式 AI 应用,可
16、以将其应用在内部知识问答、自动邮件生成、代码补齐等场景中,也可以集成在诸如新药研发、预测性维护、广告推荐、智能营销等行业垂直应用中。.大模型提供商的挑战:数据准备耗时,训练成本高昂现阶段,作为生成式 AI 应用创新的源头,模型提供商在模型训练环节面临着一系列关键挑战,比如数据准备耗时、计算存储网络需要提升性能、训练成本高昂、生成内容需要减少幻觉且需要符合监管等。数据准备耗时耗力:相比中小模型,用于大模型训练的数据有三个特征数据量大,对数据质量的要求更高,对数据安全的要求更高。在数据准备环节,模型提供商在海量数据清洗、关键数据脱敏等环节需要消耗大量时间精力。为确保建立负责任的 AI,也需要对用于
17、模型训练的数据进行大量的审核工作。因此,缩短数据清洗时间,提高数据准备工作效率,是当前的迫切需求。基础架构管理与优化门槛高:大模型参数量往往达到千亿、万亿级别,用于模型训练的数据会达到千百万个数据点。训练过程中,无论大小文件的存储、海量小文件的读取,还是算力集群的稳定性、数据的高速写入写出,都要求团队具备专业的基础架构相关技能。用于训练的基础设施成本高昂:大模型的单次训练通常会用到千卡甚至万卡级别,因此计算所需要的算力相比以往中小模型时代大幅提升。如何在保证计算性能、稳定性的前提下,降低整体成本,是大模型提供商的迫切需求。确保模型效果不断提升:能够确保大模型走向市场的前提在于模型生成内容的准确
18、性,以及怎样确保模型少一些幻觉,实现“所答即所问”,这也是模型提供商重点投入的方向。此外,未来 年,如何能够确保大模型效果持续提升,也是大模型提供商的当务之急。.生成式 AI 应用开发者的挑战:数据集成复杂,模型适配难,安全要求高生成式 AI 应用开发者是打通最后一公里、实现技术规模化复制的重要环节,然而当前生成式 AI 的应用开发,也面临着诸多挑战。模型选择与评估耗时且无参考依据:一方面,今天的大模型应用仍然处于早期,企业中的应用场景纷繁复杂,开发人员需要花时间去尝试,以便为应用场景选择效果最优的模型;另一方面,在同一个应用中可能会用到多个模型,而不同模型的 API 也存在较大差异。如何能在
19、模型选择与评估环节提高效率,是生成式AI应用开发的首要挑战。模型适配与调整门槛较高:从基础模型到能上线的生成式 AI 应用,离不开对于模型的调优,或者其他模型定制功能来发挥大模型的差异化优势。而大部分企业在这方面并没有任何储备。对于采用 RAG 的用户,在将来自企业内外部数据做成外挂知识库的过程中,需要选择专门的数据库来存储知识,这一数据库既可能是全新的向量数据库,也可能是具备向量引擎能力的传统数据库。对于微调模型的用户,模型调优环节需要对模型结构有基础的了解,调优也会带来一定的算力要求。即使只是采用提示词工程的方式来使用大模型,也需要有专业的提示词工程师。上述这三种方式,当前市场上的成功实践
20、均比较少,企业内部也没有相关的积累,入门的门槛较高。推理部署成本高昂:未来,将有越来越多的生成式 AI 实践开始走向推理阶段,也将有越来越多的用户开始使用生成式 AI。如何提升推理性能,同时大幅降低推理成本,是整个行业的迫切需求。缺乏数据/知识集成的经验:在生成式 AI 时代,无论是模型定制环节还是模型推理环节,都会涉及到大量的数据交互工作。这些领域的专有数据将造就一家企业的不同。例如,对于一家数据储备完善、拥有高质量数据集的企业,若能基于自有数据对模型进行微调,或者以插件的形式结合自有数据来生成内容,则大模型生成的结果将得到显著提高。而今天,大部分企业还是存在不同程度的数据烟囱现象,数据分散
21、、数据归集难、数据管理复杂是用户普遍会遇到的问题。建立端到端的自动化数据集成管道,减少跨数据存储库的数据集成工作,能够加快应用的上线。工程化落地复杂:在落地过程中,大模型本身只能解决%的问题,从大模型到落地的应用,基础设施的搭建与优化,模型的部署与运维,数据工程等,这些周边的工程能力要解决剩下的%。这其中每一个环节都需要优化,很多企业恰恰缺乏这方面的经验和能力。安全要求高:生成式 AI 应用开发者,既需要保证用户用于模型定制的数据不被基础模型所吸收,自身优势不被友商所利用;又需要确保模型输出内容的合规,避免答非所问等幻觉问题。这意味着,生成式 AI 应用的开发和使用将对安全提出更高的要求。图
22、生成式AI应用开发环节的挑战来源:IDC,端到端数据与知识的集成为用例选择模型保证模型生成内容安全合规生成式 AI 应用开发人才技能缺失确保模型所问即所答构建 AI 应用的整体成本.生成式 AI 应用使用方的挑战:应用场景筛选难,数据隐私安全顾虑,缺乏成功部署实践难以确定应用场景:企业对生成式 AI 的期待很高,然而从哪些应用场景着手,如何筛选、判定应用场景,以及如何寻求一些可参考的成功案例,是企业着手生成式 AI 项目面临的首批挑战。对于安全、隐私的担忧:成熟地运用生成式 AI 工具可以显著提升员工工作效率,提升创造力,然而用户也会担忧将自有数据、文件上传到大模型,是否会泄露私有数据与知识。
23、这也是很多具备海量数据的企业的首要担忧,一定程度上也影响了生成式 AI 的落地进程。缺乏成功的部署实践:训练好的模型需要在保留数据集的基础上进行性能、准确性等方面的测试。部署上线推理过程中,也需要注意可能的数据漂移。而在应用不断迭代的过程中,当前也缺乏成熟的模型效果监测机制。成本高企:生成式 AI 应用上线后,一方面用户使用频率增加,与模型的每一次交互,都会伴随推理成本的增加;另一方面,并发量、吞吐量、时延要求的不断提高,对算力的要求也会不断提高。只有不断降低使用成本,才有可能真正促进AI的普惠。人才/技能不足:今天,几乎所有参与生成式 AI 产业的企业,都面临着严重的人才短缺问题。大模型相关
24、人才稀缺且成本高昂,导致企业相关技能的不足;具备模型调优等定制能力的人才尤为短缺。模型选择与适配难;如何充分发挥自有数据优势;面向AI的基础设施的优化;如何确保负责任的 AI;以及推进企业应用程序的AI规模化。要克服这些挑战,既需要产业上下游的生态协作与优势互补,也需要依托能够应对这些挑战的技术栈,在此基础上,才能加速生成式AI应用的落地。要加速生成式 AI 应用的构建与落地,从应用场景识别到模型选择,模型适配与定制,模型部署,各个环节都需要助力,以下五大关键挑战是当前企业拥抱生成式 AI 时面临的现实问题:企业落地生成式 AI 应用的现实挑战整体来看图 企业落地生成式 AI 应用的现实挑战模
25、型选择与适配相关自有数据优势相关AI 应用程序规模化有关确保负责任 AI 有关AI 基础设施相关在众多大模型中选择试错成本高模型选择评估与迭代生成式AI技术基本认知低应用场景难以定位无处着手确定应用场景准备数据耗时长清洗数据耗时长 数据准备复杂的跨系统的集成多数据源、多步骤应用集成缺乏提示词工程师和调优人才数据安全与隐私问题跨系统集成数据/知识难模型定制生成式结果的不确定性:答非所问、幻觉部署AI应用需要从Iaas/Paas层开始搭建模型部署异构基础设施管理与优化技术门槛高模型训练运行推理的算力成本高昂边缘侧、端侧推理优化模型推理尽管现阶段使用大模型的挑战、担忧居多,展望其潜在的商业价值,用户
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计算机 行业 关键 要素 解锁 生成 AI 全新 机遇
1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【宇***】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时私信或留言给本站上传会员【宇***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。